| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mgmplusf.1 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
mgmplusf.2 |
⊢ ⨣ = ( +𝑓 ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 4 |
1 3
|
mgmcl |
⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 5 |
4
|
3expb |
⊢ ( ( 𝑀 ∈ Mgm ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 6 |
5
|
ralrimivva |
⊢ ( 𝑀 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
| 7 |
1 3 2
|
plusffval |
⊢ ⨣ = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 8 |
7
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ↔ ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 9 |
6 8
|
sylib |
⊢ ( 𝑀 ∈ Mgm → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |