| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modaddid.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 2 |
|
elfzoelz |
⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → 𝑋 ∈ ℤ ) |
| 3 |
2
|
zred |
⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → 𝑋 ∈ ℝ ) |
| 4 |
3 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐼 → 𝑋 ∈ ℝ ) |
| 5 |
|
elfzoelz |
⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℤ ) |
| 6 |
5
|
zred |
⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → 𝑌 ∈ ℝ ) |
| 7 |
6 1
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐼 → 𝑌 ∈ ℝ ) |
| 8 |
4 7
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) |
| 10 |
|
eluz3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 11 |
10
|
nnrpd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ+ ) |
| 12 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
| 13 |
11 12
|
anim12ci |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 14 |
|
modaddb |
⊢ ( ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ∧ ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ) ) |
| 15 |
9 13 14
|
3imp3i2an |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ) ) |
| 16 |
|
zmodidfzoimp |
⊢ ( 𝑋 ∈ ( 0 ..^ 𝑁 ) → ( 𝑋 mod 𝑁 ) = 𝑋 ) |
| 17 |
16 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐼 → ( 𝑋 mod 𝑁 ) = 𝑋 ) |
| 18 |
|
zmodidfzoimp |
⊢ ( 𝑌 ∈ ( 0 ..^ 𝑁 ) → ( 𝑌 mod 𝑁 ) = 𝑌 ) |
| 19 |
18 1
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐼 → ( 𝑌 mod 𝑁 ) = 𝑌 ) |
| 20 |
17 19
|
eqeqan12d |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑋 mod 𝑁 ) = ( 𝑌 mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |
| 22 |
15 21
|
bitr3d |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝑋 + 𝐾 ) mod 𝑁 ) = ( ( 𝑌 + 𝐾 ) mod 𝑁 ) ↔ 𝑋 = 𝑌 ) ) |