| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modaddid.i |
|- I = ( 0 ..^ N ) |
| 2 |
|
elfzoelz |
|- ( X e. ( 0 ..^ N ) -> X e. ZZ ) |
| 3 |
2
|
zred |
|- ( X e. ( 0 ..^ N ) -> X e. RR ) |
| 4 |
3 1
|
eleq2s |
|- ( X e. I -> X e. RR ) |
| 5 |
|
elfzoelz |
|- ( Y e. ( 0 ..^ N ) -> Y e. ZZ ) |
| 6 |
5
|
zred |
|- ( Y e. ( 0 ..^ N ) -> Y e. RR ) |
| 7 |
6 1
|
eleq2s |
|- ( Y e. I -> Y e. RR ) |
| 8 |
4 7
|
anim12i |
|- ( ( X e. I /\ Y e. I ) -> ( X e. RR /\ Y e. RR ) ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( X e. RR /\ Y e. RR ) ) |
| 10 |
|
eluz3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 11 |
10
|
nnrpd |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR+ ) |
| 12 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
| 13 |
11 12
|
anim12ci |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ZZ ) -> ( K e. RR /\ N e. RR+ ) ) |
| 14 |
|
modaddb |
|- ( ( ( X e. RR /\ Y e. RR ) /\ ( K e. RR /\ N e. RR+ ) ) -> ( ( X mod N ) = ( Y mod N ) <-> ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) ) ) |
| 15 |
9 13 14
|
3imp3i2an |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( X mod N ) = ( Y mod N ) <-> ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) ) ) |
| 16 |
|
zmodidfzoimp |
|- ( X e. ( 0 ..^ N ) -> ( X mod N ) = X ) |
| 17 |
16 1
|
eleq2s |
|- ( X e. I -> ( X mod N ) = X ) |
| 18 |
|
zmodidfzoimp |
|- ( Y e. ( 0 ..^ N ) -> ( Y mod N ) = Y ) |
| 19 |
18 1
|
eleq2s |
|- ( Y e. I -> ( Y mod N ) = Y ) |
| 20 |
17 19
|
eqeqan12d |
|- ( ( X e. I /\ Y e. I ) -> ( ( X mod N ) = ( Y mod N ) <-> X = Y ) ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( X mod N ) = ( Y mod N ) <-> X = Y ) ) |
| 22 |
15 21
|
bitr3d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) <-> X = Y ) ) |