Metamath Proof Explorer


Theorem modaddid

Description: The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025)

Ref Expression
Hypothesis modaddid.i I = 0 ..^ N
Assertion modaddid N 3 X I Y I K X + K mod N = Y + K mod N X = Y

Proof

Step Hyp Ref Expression
1 modaddid.i I = 0 ..^ N
2 elfzoelz X 0 ..^ N X
3 2 zred X 0 ..^ N X
4 3 1 eleq2s X I X
5 elfzoelz Y 0 ..^ N Y
6 5 zred Y 0 ..^ N Y
7 6 1 eleq2s Y I Y
8 4 7 anim12i X I Y I X Y
9 8 3ad2ant2 N 3 X I Y I K X Y
10 eluz3nn N 3 N
11 10 nnrpd N 3 N +
12 zre K K
13 11 12 anim12ci N 3 K K N +
14 modaddb X Y K N + X mod N = Y mod N X + K mod N = Y + K mod N
15 9 13 14 3imp3i2an N 3 X I Y I K X mod N = Y mod N X + K mod N = Y + K mod N
16 zmodidfzoimp X 0 ..^ N X mod N = X
17 16 1 eleq2s X I X mod N = X
18 zmodidfzoimp Y 0 ..^ N Y mod N = Y
19 18 1 eleq2s Y I Y mod N = Y
20 17 19 eqeqan12d X I Y I X mod N = Y mod N X = Y
21 20 3ad2ant2 N 3 X I Y I K X mod N = Y mod N X = Y
22 15 21 bitr3d N 3 X I Y I K X + K mod N = Y + K mod N X = Y