| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modadd1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
| 2 |
1
|
3expa |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
| 3 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A e. RR ) |
| 4 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> C e. RR ) |
| 5 |
3 4
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. RR ) |
| 6 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B e. RR ) |
| 7 |
6 4
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. RR ) |
| 8 |
5 7
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) e. RR /\ ( B + C ) e. RR ) ) |
| 9 |
8
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A + C ) e. RR /\ ( B + C ) e. RR ) ) |
| 10 |
|
renegcl |
|- ( C e. RR -> -u C e. RR ) |
| 11 |
10
|
anim1i |
|- ( ( C e. RR /\ D e. RR+ ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 12 |
11
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 13 |
12
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 14 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
| 15 |
|
modadd1 |
|- ( ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) /\ ( -u C e. RR /\ D e. RR+ ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
| 16 |
9 13 14 15
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
| 17 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 18 |
17
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A e. CC ) |
| 20 |
|
simpl |
|- ( ( C e. RR /\ D e. RR+ ) -> C e. RR ) |
| 21 |
20
|
recnd |
|- ( ( C e. RR /\ D e. RR+ ) -> C e. CC ) |
| 22 |
21
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) |
| 23 |
19 22
|
addcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. CC ) |
| 24 |
23 22
|
negsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) + -u C ) = ( ( A + C ) - C ) ) |
| 25 |
19 22
|
pncand |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - C ) = A ) |
| 26 |
24 25
|
eqtr2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A = ( ( A + C ) + -u C ) ) |
| 27 |
26
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A mod D ) = ( ( ( A + C ) + -u C ) mod D ) ) |
| 28 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 29 |
28
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 30 |
29
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B e. CC ) |
| 31 |
30 22
|
addcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. CC ) |
| 32 |
31 22
|
negsubd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) + -u C ) = ( ( B + C ) - C ) ) |
| 33 |
30 22
|
pncand |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - C ) = B ) |
| 34 |
32 33
|
eqtr2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B = ( ( B + C ) + -u C ) ) |
| 35 |
34
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
| 36 |
27 35
|
eqeq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) ) |
| 38 |
16 37
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( A mod D ) = ( B mod D ) ) |
| 39 |
2 38
|
impbida |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |