Step |
Hyp |
Ref |
Expression |
1 |
|
mopnex.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) |
4 |
3
|
stdbdmet |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ+ ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
5 |
2 4
|
mpan2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ) |
6 |
|
1xr |
⊢ 1 ∈ ℝ* |
7 |
|
0lt1 |
⊢ 0 < 1 |
8 |
3 1
|
stdbdmopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℝ* ∧ 0 < 1 ) → 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) |
9 |
6 7 8
|
mp3an23 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑑 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) → ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) |
11 |
10
|
rspceeqv |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 = ( MetOpen ‘ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ if ( ( 𝑥 𝐷 𝑦 ) ≤ 1 , ( 𝑥 𝐷 𝑦 ) , 1 ) ) ) ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |
12 |
5 9 11
|
syl2anc |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∃ 𝑑 ∈ ( Met ‘ 𝑋 ) 𝐽 = ( MetOpen ‘ 𝑑 ) ) |