Metamath Proof Explorer


Theorem mopnex

Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis mopnex.1 J=MetOpenD
Assertion mopnex D∞MetXdMetXJ=MetOpend

Proof

Step Hyp Ref Expression
1 mopnex.1 J=MetOpenD
2 1rp 1+
3 eqid xX,yXifxDy1xDy1=xX,yXifxDy1xDy1
4 3 stdbdmet D∞MetX1+xX,yXifxDy1xDy1MetX
5 2 4 mpan2 D∞MetXxX,yXifxDy1xDy1MetX
6 1xr 1*
7 0lt1 0<1
8 3 1 stdbdmopn D∞MetX1*0<1J=MetOpenxX,yXifxDy1xDy1
9 6 7 8 mp3an23 D∞MetXJ=MetOpenxX,yXifxDy1xDy1
10 fveq2 d=xX,yXifxDy1xDy1MetOpend=MetOpenxX,yXifxDy1xDy1
11 10 rspceeqv xX,yXifxDy1xDy1MetXJ=MetOpenxX,yXifxDy1xDy1dMetXJ=MetOpend
12 5 9 11 syl2anc D∞MetXdMetXJ=MetOpend