Metamath Proof Explorer


Theorem stdbdmopn

Description: The standard bounded metric corresponding to C generates the same topology as C . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses stdbdmet.1 D=xX,yXifxCyRxCyR
stdbdmopn.2 J=MetOpenC
Assertion stdbdmopn C∞MetXR*0<RJ=MetOpenD

Proof

Step Hyp Ref Expression
1 stdbdmet.1 D=xX,yXifxCyRxCyR
2 stdbdmopn.2 J=MetOpenC
3 rpxr r+r*
4 3 ad2antll C∞MetXR*0<RzXr+r*
5 simpl2 C∞MetXR*0<RzXr+R*
6 4 5 ifcld C∞MetXR*0<RzXr+ifrRrR*
7 rpre r+r
8 7 ad2antll C∞MetXR*0<RzXr+r
9 rpgt0 r+0<r
10 9 ad2antll C∞MetXR*0<RzXr+0<r
11 simpl3 C∞MetXR*0<RzXr+0<R
12 breq2 r=ifrRrR0<r0<ifrRrR
13 breq2 R=ifrRrR0<R0<ifrRrR
14 12 13 ifboth 0<r0<R0<ifrRrR
15 10 11 14 syl2anc C∞MetXR*0<RzXr+0<ifrRrR
16 0xr 0*
17 xrltle 0*ifrRrR*0<ifrRrR0ifrRrR
18 16 6 17 sylancr C∞MetXR*0<RzXr+0<ifrRrR0ifrRrR
19 15 18 mpd C∞MetXR*0<RzXr+0ifrRrR
20 xrmin1 r*R*ifrRrRr
21 4 5 20 syl2anc C∞MetXR*0<RzXr+ifrRrRr
22 xrrege0 ifrRrR*r0ifrRrRifrRrRrifrRrR
23 6 8 19 21 22 syl22anc C∞MetXR*0<RzXr+ifrRrR
24 23 15 elrpd C∞MetXR*0<RzXr+ifrRrR+
25 simprl C∞MetXR*0<RzXr+zX
26 xrmin2 r*R*ifrRrRR
27 4 5 26 syl2anc C∞MetXR*0<RzXr+ifrRrRR
28 25 6 27 3jca C∞MetXR*0<RzXr+zXifrRrR*ifrRrRR
29 1 stdbdbl C∞MetXR*0<RzXifrRrR*ifrRrRRzballDifrRrR=zballCifrRrR
30 28 29 syldan C∞MetXR*0<RzXr+zballDifrRrR=zballCifrRrR
31 30 eqcomd C∞MetXR*0<RzXr+zballCifrRrR=zballDifrRrR
32 breq1 s=ifrRrRsrifrRrRr
33 oveq2 s=ifrRrRzballCs=zballCifrRrR
34 oveq2 s=ifrRrRzballDs=zballDifrRrR
35 33 34 eqeq12d s=ifrRrRzballCs=zballDszballCifrRrR=zballDifrRrR
36 32 35 anbi12d s=ifrRrRsrzballCs=zballDsifrRrRrzballCifrRrR=zballDifrRrR
37 36 rspcev ifrRrR+ifrRrRrzballCifrRrR=zballDifrRrRs+srzballCs=zballDs
38 24 21 31 37 syl12anc C∞MetXR*0<RzXr+s+srzballCs=zballDs
39 38 ralrimivva C∞MetXR*0<RzXr+s+srzballCs=zballDs
40 simp1 C∞MetXR*0<RC∞MetX
41 1 stdbdxmet C∞MetXR*0<RD∞MetX
42 eqid MetOpenD=MetOpenD
43 2 42 metequiv2 C∞MetXD∞MetXzXr+s+srzballCs=zballDsJ=MetOpenD
44 40 41 43 syl2anc C∞MetXR*0<RzXr+s+srzballCs=zballDsJ=MetOpenD
45 39 44 mpd C∞MetXR*0<RJ=MetOpenD