| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stdbdmet.1 |
|
| 2 |
|
stdbdmopn.2 |
|
| 3 |
|
rpxr |
|
| 4 |
3
|
ad2antll |
|
| 5 |
|
simpl2 |
|
| 6 |
4 5
|
ifcld |
|
| 7 |
|
rpre |
|
| 8 |
7
|
ad2antll |
|
| 9 |
|
rpgt0 |
|
| 10 |
9
|
ad2antll |
|
| 11 |
|
simpl3 |
|
| 12 |
|
breq2 |
|
| 13 |
|
breq2 |
|
| 14 |
12 13
|
ifboth |
|
| 15 |
10 11 14
|
syl2anc |
|
| 16 |
|
0xr |
|
| 17 |
|
xrltle |
|
| 18 |
16 6 17
|
sylancr |
|
| 19 |
15 18
|
mpd |
|
| 20 |
|
xrmin1 |
|
| 21 |
4 5 20
|
syl2anc |
|
| 22 |
|
xrrege0 |
|
| 23 |
6 8 19 21 22
|
syl22anc |
|
| 24 |
23 15
|
elrpd |
|
| 25 |
|
simprl |
|
| 26 |
|
xrmin2 |
|
| 27 |
4 5 26
|
syl2anc |
|
| 28 |
25 6 27
|
3jca |
|
| 29 |
1
|
stdbdbl |
|
| 30 |
28 29
|
syldan |
|
| 31 |
30
|
eqcomd |
|
| 32 |
|
breq1 |
|
| 33 |
|
oveq2 |
|
| 34 |
|
oveq2 |
|
| 35 |
33 34
|
eqeq12d |
|
| 36 |
32 35
|
anbi12d |
|
| 37 |
36
|
rspcev |
|
| 38 |
24 21 31 37
|
syl12anc |
|
| 39 |
38
|
ralrimivva |
|
| 40 |
|
simp1 |
|
| 41 |
1
|
stdbdxmet |
|
| 42 |
|
eqid |
|
| 43 |
2 42
|
metequiv2 |
|
| 44 |
40 41 43
|
syl2anc |
|
| 45 |
39 44
|
mpd |
|