| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpteq12df.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | mpteq12df.2 | ⊢ ( 𝜑  →  𝐴  =  𝐶 ) | 
						
							| 3 |  | mpteq12df.3 | ⊢ ( 𝜑  →  𝐵  =  𝐷 ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 5 | 2 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐶 ) ) | 
						
							| 6 | 3 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑦  =  𝐵  ↔  𝑦  =  𝐷 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) ) ) | 
						
							| 8 | 1 4 7 | opabbid | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) } ) | 
						
							| 9 |  | df-mpt | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐵 ) } | 
						
							| 10 |  | df-mpt | ⊢ ( 𝑥  ∈  𝐶  ↦  𝐷 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐶  ∧  𝑦  =  𝐷 ) } | 
						
							| 11 | 8 9 10 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐶  ↦  𝐷 ) ) |