| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 3 |
|
rpcn |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ ) |
| 5 |
|
rpne0 |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
| 7 |
2 4 6
|
divcan4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) = 𝐴 ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℤ ) |
| 9 |
7 8
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) |
| 10 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 11 |
|
rpre |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) |
| 12 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐴 · 𝑀 ) ∈ ℝ ) |
| 13 |
10 11 12
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 · 𝑀 ) ∈ ℝ ) |
| 14 |
|
mod0 |
⊢ ( ( ( 𝐴 · 𝑀 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) ) |
| 15 |
13 14
|
sylancom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) ) |
| 16 |
9 15
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ) |