Metamath Proof Explorer


Theorem n0slem1lt

Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion n0slem1lt ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑀 -s 1s ) <s 𝑁 ) )

Proof

Step Hyp Ref Expression
1 n0sleltp1 ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁𝑀 <s ( 𝑁 +s 1s ) ) )
2 n0sno ( 𝑀 ∈ ℕ0s𝑀 No )
3 2 adantr ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑀 No )
4 n0sno ( 𝑁 ∈ ℕ0s𝑁 No )
5 4 adantl ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 𝑁 No )
6 peano2no ( 𝑁 No → ( 𝑁 +s 1s ) ∈ No )
7 5 6 syl ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑁 +s 1s ) ∈ No )
8 1sno 1s No
9 8 a1i ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → 1s No )
10 3 7 9 sltsub1d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 <s ( 𝑁 +s 1s ) ↔ ( 𝑀 -s 1s ) <s ( ( 𝑁 +s 1s ) -s 1s ) ) )
11 pncans ( ( 𝑁 No ∧ 1s No ) → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 )
12 4 8 11 sylancl ( 𝑁 ∈ ℕ0s → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 )
13 12 adantl ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 )
14 13 breq2d ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( ( 𝑀 -s 1s ) <s ( ( 𝑁 +s 1s ) -s 1s ) ↔ ( 𝑀 -s 1s ) <s 𝑁 ) )
15 1 10 14 3bitrd ( ( 𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑀 -s 1s ) <s 𝑁 ) )