| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0sleltp1 |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ 𝑀 <s ( 𝑁 +s 1s ) ) ) |
| 2 |
|
n0sno |
⊢ ( 𝑀 ∈ ℕ0s → 𝑀 ∈ No ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑀 ∈ No ) |
| 4 |
|
n0sno |
⊢ ( 𝑁 ∈ ℕ0s → 𝑁 ∈ No ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 𝑁 ∈ No ) |
| 6 |
|
peano2no |
⊢ ( 𝑁 ∈ No → ( 𝑁 +s 1s ) ∈ No ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑁 +s 1s ) ∈ No ) |
| 8 |
|
1sno |
⊢ 1s ∈ No |
| 9 |
8
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → 1s ∈ No ) |
| 10 |
3 7 9
|
sltsub1d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 <s ( 𝑁 +s 1s ) ↔ ( 𝑀 -s 1s ) <s ( ( 𝑁 +s 1s ) -s 1s ) ) ) |
| 11 |
|
pncans |
⊢ ( ( 𝑁 ∈ No ∧ 1s ∈ No ) → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 ) |
| 12 |
4 8 11
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0s → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑁 +s 1s ) -s 1s ) = 𝑁 ) |
| 14 |
13
|
breq2d |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( ( 𝑀 -s 1s ) <s ( ( 𝑁 +s 1s ) -s 1s ) ↔ ( 𝑀 -s 1s ) <s 𝑁 ) ) |
| 15 |
1 10 14
|
3bitrd |
⊢ ( ( 𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s ) → ( 𝑀 ≤s 𝑁 ↔ ( 𝑀 -s 1s ) <s 𝑁 ) ) |