Metamath Proof Explorer


Theorem bdayn0p1

Description: The birthday of A +s 1s is the successor of the birthday of A when A is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion bdayn0p1 ( 𝐴 ∈ ℕ0s → ( bday ‘ ( 𝐴 +s 1s ) ) = suc ( bday 𝐴 ) )

Proof

Step Hyp Ref Expression
1 n0scut2 ( 𝐴 ∈ ℕ0s → ( 𝐴 +s 1s ) = ( { 𝐴 } |s ∅ ) )
2 1 fveq2d ( 𝐴 ∈ ℕ0s → ( bday ‘ ( 𝐴 +s 1s ) ) = ( bday ‘ ( { 𝐴 } |s ∅ ) ) )
3 n0sno ( 𝐴 ∈ ℕ0s𝐴 No )
4 snelpwi ( 𝐴 No → { 𝐴 } ∈ 𝒫 No )
5 nulssgt ( { 𝐴 } ∈ 𝒫 No → { 𝐴 } <<s ∅ )
6 3 4 5 3syl ( 𝐴 ∈ ℕ0s → { 𝐴 } <<s ∅ )
7 un0 ( { 𝐴 } ∪ ∅ ) = { 𝐴 }
8 7 imaeq2i ( bday “ ( { 𝐴 } ∪ ∅ ) ) = ( bday “ { 𝐴 } )
9 bdayfn bday Fn No
10 9 a1i ( 𝐴 ∈ ℕ0s bday Fn No )
11 10 3 fnimasnd ( 𝐴 ∈ ℕ0s → ( bday “ { 𝐴 } ) = { ( bday 𝐴 ) } )
12 ssun2 { ( bday 𝐴 ) } ⊆ ( ( bday 𝐴 ) ∪ { ( bday 𝐴 ) } )
13 df-suc suc ( bday 𝐴 ) = ( ( bday 𝐴 ) ∪ { ( bday 𝐴 ) } )
14 12 13 sseqtrri { ( bday 𝐴 ) } ⊆ suc ( bday 𝐴 )
15 11 14 eqsstrdi ( 𝐴 ∈ ℕ0s → ( bday “ { 𝐴 } ) ⊆ suc ( bday 𝐴 ) )
16 8 15 eqsstrid ( 𝐴 ∈ ℕ0s → ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday 𝐴 ) )
17 bdayelon ( bday 𝐴 ) ∈ On
18 onsuc ( ( bday 𝐴 ) ∈ On → suc ( bday 𝐴 ) ∈ On )
19 17 18 ax-mp suc ( bday 𝐴 ) ∈ On
20 scutbdaybnd ( ( { 𝐴 } <<s ∅ ∧ suc ( bday 𝐴 ) ∈ On ∧ ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday 𝐴 ) ) → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday 𝐴 ) )
21 19 20 mp3an2 ( ( { 𝐴 } <<s ∅ ∧ ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday 𝐴 ) ) → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday 𝐴 ) )
22 6 16 21 syl2anc ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday 𝐴 ) )
23 ssltsep ( { 𝐴 } <<s { 𝑧 } → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 )
24 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦𝐴 <s 𝑦 ) )
25 24 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝑧 } 𝐴 <s 𝑦 ) )
26 vex 𝑧 ∈ V
27 breq2 ( 𝑦 = 𝑧 → ( 𝐴 <s 𝑦𝐴 <s 𝑧 ) )
28 26 27 ralsn ( ∀ 𝑦 ∈ { 𝑧 } 𝐴 <s 𝑦𝐴 <s 𝑧 )
29 25 28 bitrdi ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦𝐴 <s 𝑧 ) )
30 29 ralsng ( 𝐴 ∈ ℕ0s → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦𝐴 <s 𝑧 ) )
31 30 adantr ( ( 𝐴 ∈ ℕ0s𝑧 No ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦𝐴 <s 𝑧 ) )
32 n0ons ( 𝐴 ∈ ℕ0s𝐴 ∈ Ons )
33 onnolt ( ( 𝐴 ∈ Ons𝑧 No 𝐴 <s 𝑧 ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) )
34 32 33 syl3an1 ( ( 𝐴 ∈ ℕ0s𝑧 No 𝐴 <s 𝑧 ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) )
35 34 3expia ( ( 𝐴 ∈ ℕ0s𝑧 No ) → ( 𝐴 <s 𝑧 → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
36 31 35 sylbid ( ( 𝐴 ∈ ℕ0s𝑧 No ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
37 23 36 syl5 ( ( 𝐴 ∈ ℕ0s𝑧 No ) → ( { 𝐴 } <<s { 𝑧 } → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
38 37 adantrd ( ( 𝐴 ∈ ℕ0s𝑧 No ) → ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
39 38 ralrimiva ( 𝐴 ∈ ℕ0s → ∀ 𝑧 No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
40 ssint ( suc ( bday 𝐴 ) ⊆ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑦 ∈ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday 𝐴 ) ⊆ 𝑦 )
41 ssrab2 { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No
42 sseq2 ( 𝑦 = ( bday 𝑧 ) → ( suc ( bday 𝐴 ) ⊆ 𝑦 ↔ suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) ) )
43 42 ralima ( ( bday Fn No ∧ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No ) → ( ∀ 𝑦 ∈ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) ) )
44 9 41 43 mp2an ( ∀ 𝑦 ∈ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) )
45 bdayelon ( bday 𝑧 ) ∈ On
46 17 45 onsucssi ( ( bday 𝐴 ) ∈ ( bday 𝑧 ) ↔ suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) )
47 46 ralbii ( ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ( bday 𝐴 ) ∈ ( bday 𝑧 ) ↔ ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) )
48 sneq ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } )
49 48 breq2d ( 𝑥 = 𝑧 → ( { 𝐴 } <<s { 𝑥 } ↔ { 𝐴 } <<s { 𝑧 } ) )
50 48 breq1d ( 𝑥 = 𝑧 → ( { 𝑥 } <<s ∅ ↔ { 𝑧 } <<s ∅ ) )
51 49 50 anbi12d ( 𝑥 = 𝑧 → ( ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) ↔ ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) ) )
52 51 ralrab ( ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ( bday 𝐴 ) ∈ ( bday 𝑧 ) ↔ ∀ 𝑧 No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
53 47 52 bitr3i ( ∀ 𝑧 ∈ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday 𝐴 ) ⊆ ( bday 𝑧 ) ↔ ∀ 𝑧 No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
54 44 53 bitri ( ∀ 𝑦 ∈ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
55 40 54 bitri ( suc ( bday 𝐴 ) ⊆ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑧 No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday 𝐴 ) ∈ ( bday 𝑧 ) ) )
56 39 55 sylibr ( 𝐴 ∈ ℕ0s → suc ( bday 𝐴 ) ⊆ ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) )
57 scutbday ( { 𝐴 } <<s ∅ → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) )
58 6 57 syl ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = ( bday “ { 𝑥 No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) )
59 56 58 sseqtrrd ( 𝐴 ∈ ℕ0s → suc ( bday 𝐴 ) ⊆ ( bday ‘ ( { 𝐴 } |s ∅ ) ) )
60 22 59 eqssd ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = suc ( bday 𝐴 ) )
61 2 60 eqtrd ( 𝐴 ∈ ℕ0s → ( bday ‘ ( 𝐴 +s 1s ) ) = suc ( bday 𝐴 ) )