| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0scut2 |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝐴 +s 1s ) = ( { 𝐴 } |s ∅ ) ) |
| 2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℕ0s → ( bday ‘ ( 𝐴 +s 1s ) ) = ( bday ‘ ( { 𝐴 } |s ∅ ) ) ) |
| 3 |
|
n0sno |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
| 4 |
|
snelpwi |
⊢ ( 𝐴 ∈ No → { 𝐴 } ∈ 𝒫 No ) |
| 5 |
|
nulssgt |
⊢ ( { 𝐴 } ∈ 𝒫 No → { 𝐴 } <<s ∅ ) |
| 6 |
3 4 5
|
3syl |
⊢ ( 𝐴 ∈ ℕ0s → { 𝐴 } <<s ∅ ) |
| 7 |
|
un0 |
⊢ ( { 𝐴 } ∪ ∅ ) = { 𝐴 } |
| 8 |
7
|
imaeq2i |
⊢ ( bday “ ( { 𝐴 } ∪ ∅ ) ) = ( bday “ { 𝐴 } ) |
| 9 |
|
bdayfn |
⊢ bday Fn No |
| 10 |
9
|
a1i |
⊢ ( 𝐴 ∈ ℕ0s → bday Fn No ) |
| 11 |
10 3
|
fnimasnd |
⊢ ( 𝐴 ∈ ℕ0s → ( bday “ { 𝐴 } ) = { ( bday ‘ 𝐴 ) } ) |
| 12 |
|
ssun2 |
⊢ { ( bday ‘ 𝐴 ) } ⊆ ( ( bday ‘ 𝐴 ) ∪ { ( bday ‘ 𝐴 ) } ) |
| 13 |
|
df-suc |
⊢ suc ( bday ‘ 𝐴 ) = ( ( bday ‘ 𝐴 ) ∪ { ( bday ‘ 𝐴 ) } ) |
| 14 |
12 13
|
sseqtrri |
⊢ { ( bday ‘ 𝐴 ) } ⊆ suc ( bday ‘ 𝐴 ) |
| 15 |
11 14
|
eqsstrdi |
⊢ ( 𝐴 ∈ ℕ0s → ( bday “ { 𝐴 } ) ⊆ suc ( bday ‘ 𝐴 ) ) |
| 16 |
8 15
|
eqsstrid |
⊢ ( 𝐴 ∈ ℕ0s → ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) |
| 17 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 18 |
|
onsuc |
⊢ ( ( bday ‘ 𝐴 ) ∈ On → suc ( bday ‘ 𝐴 ) ∈ On ) |
| 19 |
17 18
|
ax-mp |
⊢ suc ( bday ‘ 𝐴 ) ∈ On |
| 20 |
|
scutbdaybnd |
⊢ ( ( { 𝐴 } <<s ∅ ∧ suc ( bday ‘ 𝐴 ) ∈ On ∧ ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) |
| 21 |
19 20
|
mp3an2 |
⊢ ( ( { 𝐴 } <<s ∅ ∧ ( bday “ ( { 𝐴 } ∪ ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) |
| 22 |
6 16 21
|
syl2anc |
⊢ ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) ⊆ suc ( bday ‘ 𝐴 ) ) |
| 23 |
|
ssltsep |
⊢ ( { 𝐴 } <<s { 𝑧 } → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ) |
| 24 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦 ) ) |
| 25 |
24
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ { 𝑧 } 𝐴 <s 𝑦 ) ) |
| 26 |
|
vex |
⊢ 𝑧 ∈ V |
| 27 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 <s 𝑦 ↔ 𝐴 <s 𝑧 ) ) |
| 28 |
26 27
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑧 } 𝐴 <s 𝑦 ↔ 𝐴 <s 𝑧 ) |
| 29 |
25 28
|
bitrdi |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧 ) ) |
| 30 |
29
|
ralsng |
⊢ ( 𝐴 ∈ ℕ0s → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 ↔ 𝐴 <s 𝑧 ) ) |
| 32 |
|
n0ons |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ Ons ) |
| 33 |
|
onnolt |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝑧 ∈ No ∧ 𝐴 <s 𝑧 ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) |
| 34 |
32 33
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ∧ 𝐴 <s 𝑧 ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) |
| 35 |
34
|
3expia |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ) → ( 𝐴 <s 𝑧 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 36 |
31 35
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝑧 } 𝑥 <s 𝑦 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 37 |
23 36
|
syl5 |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ) → ( { 𝐴 } <<s { 𝑧 } → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 38 |
37
|
adantrd |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑧 ∈ No ) → ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 39 |
38
|
ralrimiva |
⊢ ( 𝐴 ∈ ℕ0s → ∀ 𝑧 ∈ No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 40 |
|
ssint |
⊢ ( suc ( bday ‘ 𝐴 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑦 ∈ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday ‘ 𝐴 ) ⊆ 𝑦 ) |
| 41 |
|
ssrab2 |
⊢ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No |
| 42 |
|
sseq2 |
⊢ ( 𝑦 = ( bday ‘ 𝑧 ) → ( suc ( bday ‘ 𝐴 ) ⊆ 𝑦 ↔ suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ) ) |
| 43 |
42
|
ralima |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No ) → ( ∀ 𝑦 ∈ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday ‘ 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ) ) |
| 44 |
9 41 43
|
mp2an |
⊢ ( ∀ 𝑦 ∈ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday ‘ 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ) |
| 45 |
|
bdayelon |
⊢ ( bday ‘ 𝑧 ) ∈ On |
| 46 |
17 45
|
onsucssi |
⊢ ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ↔ suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ) |
| 47 |
46
|
ralbii |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ) |
| 48 |
|
sneq |
⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) |
| 49 |
48
|
breq2d |
⊢ ( 𝑥 = 𝑧 → ( { 𝐴 } <<s { 𝑥 } ↔ { 𝐴 } <<s { 𝑧 } ) ) |
| 50 |
48
|
breq1d |
⊢ ( 𝑥 = 𝑧 → ( { 𝑥 } <<s ∅ ↔ { 𝑧 } <<s ∅ ) ) |
| 51 |
49 50
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) ↔ ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) ) ) |
| 52 |
51
|
ralrab |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 53 |
47 52
|
bitr3i |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 54 |
44 53
|
bitri |
⊢ ( ∀ 𝑦 ∈ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) suc ( bday ‘ 𝐴 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 55 |
40 54
|
bitri |
⊢ ( suc ( bday ‘ 𝐴 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑧 ∈ No ( ( { 𝐴 } <<s { 𝑧 } ∧ { 𝑧 } <<s ∅ ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝑧 ) ) ) |
| 56 |
39 55
|
sylibr |
⊢ ( 𝐴 ∈ ℕ0s → suc ( bday ‘ 𝐴 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ) |
| 57 |
|
scutbday |
⊢ ( { 𝐴 } <<s ∅ → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ) |
| 58 |
6 57
|
syl |
⊢ ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 𝐴 } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ) |
| 59 |
56 58
|
sseqtrrd |
⊢ ( 𝐴 ∈ ℕ0s → suc ( bday ‘ 𝐴 ) ⊆ ( bday ‘ ( { 𝐴 } |s ∅ ) ) ) |
| 60 |
22 59
|
eqssd |
⊢ ( 𝐴 ∈ ℕ0s → ( bday ‘ ( { 𝐴 } |s ∅ ) ) = suc ( bday ‘ 𝐴 ) ) |
| 61 |
2 60
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0s → ( bday ‘ ( 𝐴 +s 1s ) ) = suc ( bday ‘ 𝐴 ) ) |