| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0scut2 |
|- ( A e. NN0_s -> ( A +s 1s ) = ( { A } |s (/) ) ) |
| 2 |
1
|
fveq2d |
|- ( A e. NN0_s -> ( bday ` ( A +s 1s ) ) = ( bday ` ( { A } |s (/) ) ) ) |
| 3 |
|
n0sno |
|- ( A e. NN0_s -> A e. No ) |
| 4 |
|
snelpwi |
|- ( A e. No -> { A } e. ~P No ) |
| 5 |
|
nulssgt |
|- ( { A } e. ~P No -> { A } < |
| 6 |
3 4 5
|
3syl |
|- ( A e. NN0_s -> { A } < |
| 7 |
|
un0 |
|- ( { A } u. (/) ) = { A } |
| 8 |
7
|
imaeq2i |
|- ( bday " ( { A } u. (/) ) ) = ( bday " { A } ) |
| 9 |
|
bdayfn |
|- bday Fn No |
| 10 |
9
|
a1i |
|- ( A e. NN0_s -> bday Fn No ) |
| 11 |
10 3
|
fnimasnd |
|- ( A e. NN0_s -> ( bday " { A } ) = { ( bday ` A ) } ) |
| 12 |
|
ssun2 |
|- { ( bday ` A ) } C_ ( ( bday ` A ) u. { ( bday ` A ) } ) |
| 13 |
|
df-suc |
|- suc ( bday ` A ) = ( ( bday ` A ) u. { ( bday ` A ) } ) |
| 14 |
12 13
|
sseqtrri |
|- { ( bday ` A ) } C_ suc ( bday ` A ) |
| 15 |
11 14
|
eqsstrdi |
|- ( A e. NN0_s -> ( bday " { A } ) C_ suc ( bday ` A ) ) |
| 16 |
8 15
|
eqsstrid |
|- ( A e. NN0_s -> ( bday " ( { A } u. (/) ) ) C_ suc ( bday ` A ) ) |
| 17 |
|
bdayelon |
|- ( bday ` A ) e. On |
| 18 |
|
onsuc |
|- ( ( bday ` A ) e. On -> suc ( bday ` A ) e. On ) |
| 19 |
17 18
|
ax-mp |
|- suc ( bday ` A ) e. On |
| 20 |
|
scutbdaybnd |
|- ( ( { A } < ( bday ` ( { A } |s (/) ) ) C_ suc ( bday ` A ) ) |
| 21 |
19 20
|
mp3an2 |
|- ( ( { A } < ( bday ` ( { A } |s (/) ) ) C_ suc ( bday ` A ) ) |
| 22 |
6 16 21
|
syl2anc |
|- ( A e. NN0_s -> ( bday ` ( { A } |s (/) ) ) C_ suc ( bday ` A ) ) |
| 23 |
|
ssltsep |
|- ( { A } < A. x e. { A } A. y e. { z } x |
| 24 |
|
breq1 |
|- ( x = A -> ( x A |
| 25 |
24
|
ralbidv |
|- ( x = A -> ( A. y e. { z } x A. y e. { z } A |
| 26 |
|
vex |
|- z e. _V |
| 27 |
|
breq2 |
|- ( y = z -> ( A A |
| 28 |
26 27
|
ralsn |
|- ( A. y e. { z } A A |
| 29 |
25 28
|
bitrdi |
|- ( x = A -> ( A. y e. { z } x A |
| 30 |
29
|
ralsng |
|- ( A e. NN0_s -> ( A. x e. { A } A. y e. { z } x A |
| 31 |
30
|
adantr |
|- ( ( A e. NN0_s /\ z e. No ) -> ( A. x e. { A } A. y e. { z } x A |
| 32 |
|
n0ons |
|- ( A e. NN0_s -> A e. On_s ) |
| 33 |
|
onnolt |
|- ( ( A e. On_s /\ z e. No /\ A ( bday ` A ) e. ( bday ` z ) ) |
| 34 |
32 33
|
syl3an1 |
|- ( ( A e. NN0_s /\ z e. No /\ A ( bday ` A ) e. ( bday ` z ) ) |
| 35 |
34
|
3expia |
|- ( ( A e. NN0_s /\ z e. No ) -> ( A ( bday ` A ) e. ( bday ` z ) ) ) |
| 36 |
31 35
|
sylbid |
|- ( ( A e. NN0_s /\ z e. No ) -> ( A. x e. { A } A. y e. { z } x ( bday ` A ) e. ( bday ` z ) ) ) |
| 37 |
23 36
|
syl5 |
|- ( ( A e. NN0_s /\ z e. No ) -> ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 38 |
37
|
adantrd |
|- ( ( A e. NN0_s /\ z e. No ) -> ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 39 |
38
|
ralrimiva |
|- ( A e. NN0_s -> A. z e. No ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 40 |
|
ssint |
|- ( suc ( bday ` A ) C_ |^| ( bday " { x e. No | ( { A } < A. y e. ( bday " { x e. No | ( { A } < |
| 41 |
|
ssrab2 |
|- { x e. No | ( { A } < |
| 42 |
|
sseq2 |
|- ( y = ( bday ` z ) -> ( suc ( bday ` A ) C_ y <-> suc ( bday ` A ) C_ ( bday ` z ) ) ) |
| 43 |
42
|
ralima |
|- ( ( bday Fn No /\ { x e. No | ( { A } < ( A. y e. ( bday " { x e. No | ( { A } < A. z e. { x e. No | ( { A } < |
| 44 |
9 41 43
|
mp2an |
|- ( A. y e. ( bday " { x e. No | ( { A } < A. z e. { x e. No | ( { A } < |
| 45 |
|
bdayelon |
|- ( bday ` z ) e. On |
| 46 |
17 45
|
onsucssi |
|- ( ( bday ` A ) e. ( bday ` z ) <-> suc ( bday ` A ) C_ ( bday ` z ) ) |
| 47 |
46
|
ralbii |
|- ( A. z e. { x e. No | ( { A } < A. z e. { x e. No | ( { A } < |
| 48 |
|
sneq |
|- ( x = z -> { x } = { z } ) |
| 49 |
48
|
breq2d |
|- ( x = z -> ( { A } < { A } < |
| 50 |
48
|
breq1d |
|- ( x = z -> ( { x } < { z } < |
| 51 |
49 50
|
anbi12d |
|- ( x = z -> ( ( { A } < ( { A } < |
| 52 |
51
|
ralrab |
|- ( A. z e. { x e. No | ( { A } < A. z e. No ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 53 |
47 52
|
bitr3i |
|- ( A. z e. { x e. No | ( { A } < A. z e. No ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 54 |
44 53
|
bitri |
|- ( A. y e. ( bday " { x e. No | ( { A } < A. z e. No ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 55 |
40 54
|
bitri |
|- ( suc ( bday ` A ) C_ |^| ( bday " { x e. No | ( { A } < A. z e. No ( ( { A } < ( bday ` A ) e. ( bday ` z ) ) ) |
| 56 |
39 55
|
sylibr |
|- ( A e. NN0_s -> suc ( bday ` A ) C_ |^| ( bday " { x e. No | ( { A } < |
| 57 |
|
scutbday |
|- ( { A } < ( bday ` ( { A } |s (/) ) ) = |^| ( bday " { x e. No | ( { A } < |
| 58 |
6 57
|
syl |
|- ( A e. NN0_s -> ( bday ` ( { A } |s (/) ) ) = |^| ( bday " { x e. No | ( { A } < |
| 59 |
56 58
|
sseqtrrd |
|- ( A e. NN0_s -> suc ( bday ` A ) C_ ( bday ` ( { A } |s (/) ) ) ) |
| 60 |
22 59
|
eqssd |
|- ( A e. NN0_s -> ( bday ` ( { A } |s (/) ) ) = suc ( bday ` A ) ) |
| 61 |
2 60
|
eqtrd |
|- ( A e. NN0_s -> ( bday ` ( A +s 1s ) ) = suc ( bday ` A ) ) |