Metamath Proof Explorer


Theorem bdayn0p1

Description: The birthday of A +s 1s is the successor of the birthday of A when A is a non-negative surreal integer. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion bdayn0p1 A 0s bday A + s 1 s = suc bday A

Proof

Step Hyp Ref Expression
1 n0scut2 A 0s A + s 1 s = A | s
2 1 fveq2d A 0s bday A + s 1 s = bday A | s
3 n0sno A 0s A No
4 snelpwi A No A 𝒫 No
5 nulssgt A 𝒫 No A s
6 3 4 5 3syl A 0s A s
7 un0 A = A
8 7 imaeq2i bday A = bday A
9 bdayfn bday Fn No
10 9 a1i A 0s bday Fn No
11 10 3 fnimasnd A 0s bday A = bday A
12 ssun2 bday A bday A bday A
13 df-suc suc bday A = bday A bday A
14 12 13 sseqtrri bday A suc bday A
15 11 14 eqsstrdi A 0s bday A suc bday A
16 8 15 eqsstrid A 0s bday A suc bday A
17 bdayelon bday A On
18 onsuc bday A On suc bday A On
19 17 18 ax-mp suc bday A On
20 scutbdaybnd A s suc bday A On bday A suc bday A bday A | s suc bday A
21 19 20 mp3an2 A s bday A suc bday A bday A | s suc bday A
22 6 16 21 syl2anc A 0s bday A | s suc bday A
23 ssltsep A s z x A y z x < s y
24 breq1 x = A x < s y A < s y
25 24 ralbidv x = A y z x < s y y z A < s y
26 vex z V
27 breq2 y = z A < s y A < s z
28 26 27 ralsn y z A < s y A < s z
29 25 28 bitrdi x = A y z x < s y A < s z
30 29 ralsng A 0s x A y z x < s y A < s z
31 30 adantr A 0s z No x A y z x < s y A < s z
32 n0ons A 0s A On s
33 onnolt A On s z No A < s z bday A bday z
34 32 33 syl3an1 A 0s z No A < s z bday A bday z
35 34 3expia A 0s z No A < s z bday A bday z
36 31 35 sylbid A 0s z No x A y z x < s y bday A bday z
37 23 36 syl5 A 0s z No A s z bday A bday z
38 37 adantrd A 0s z No A s z z s bday A bday z
39 38 ralrimiva A 0s z No A s z z s bday A bday z
40 ssint suc bday A bday x No | A s x x s y bday x No | A s x x s suc bday A y
41 ssrab2 x No | A s x x s No
42 sseq2 y = bday z suc bday A y suc bday A bday z
43 42 ralima bday Fn No x No | A s x x s No y bday x No | A s x x s suc bday A y z x No | A s x x s suc bday A bday z
44 9 41 43 mp2an y bday x No | A s x x s suc bday A y z x No | A s x x s suc bday A bday z
45 bdayelon bday z On
46 17 45 onsucssi bday A bday z suc bday A bday z
47 46 ralbii z x No | A s x x s bday A bday z z x No | A s x x s suc bday A bday z
48 sneq x = z x = z
49 48 breq2d x = z A s x A s z
50 48 breq1d x = z x s z s
51 49 50 anbi12d x = z A s x x s A s z z s
52 51 ralrab z x No | A s x x s bday A bday z z No A s z z s bday A bday z
53 47 52 bitr3i z x No | A s x x s suc bday A bday z z No A s z z s bday A bday z
54 44 53 bitri y bday x No | A s x x s suc bday A y z No A s z z s bday A bday z
55 40 54 bitri suc bday A bday x No | A s x x s z No A s z z s bday A bday z
56 39 55 sylibr A 0s suc bday A bday x No | A s x x s
57 scutbday A s bday A | s = bday x No | A s x x s
58 6 57 syl A 0s bday A | s = bday x No | A s x x s
59 56 58 sseqtrrd A 0s suc bday A bday A | s
60 22 59 eqssd A 0s bday A | s = suc bday A
61 2 60 eqtrd A 0s bday A + s 1 s = suc bday A