| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayfun |
|- Fun bday |
| 2 |
|
funres |
|- ( Fun bday -> Fun ( bday |` NN0_s ) ) |
| 3 |
1 2
|
ax-mp |
|- Fun ( bday |` NN0_s ) |
| 4 |
|
dmres |
|- dom ( bday |` NN0_s ) = ( NN0_s i^i dom bday ) |
| 5 |
|
bdaydm |
|- dom bday = No |
| 6 |
5
|
ineq2i |
|- ( NN0_s i^i dom bday ) = ( NN0_s i^i No ) |
| 7 |
|
n0ssno |
|- NN0_s C_ No |
| 8 |
|
dfss2 |
|- ( NN0_s C_ No <-> ( NN0_s i^i No ) = NN0_s ) |
| 9 |
7 8
|
mpbi |
|- ( NN0_s i^i No ) = NN0_s |
| 10 |
4 6 9
|
3eqtri |
|- dom ( bday |` NN0_s ) = NN0_s |
| 11 |
|
df-fn |
|- ( ( bday |` NN0_s ) Fn NN0_s <-> ( Fun ( bday |` NN0_s ) /\ dom ( bday |` NN0_s ) = NN0_s ) ) |
| 12 |
3 10 11
|
mpbir2an |
|- ( bday |` NN0_s ) Fn NN0_s |
| 13 |
|
fvres |
|- ( x e. NN0_s -> ( ( bday |` NN0_s ) ` x ) = ( bday ` x ) ) |
| 14 |
|
n0sbday |
|- ( x e. NN0_s -> ( bday ` x ) e. _om ) |
| 15 |
13 14
|
eqeltrd |
|- ( x e. NN0_s -> ( ( bday |` NN0_s ) ` x ) e. _om ) |
| 16 |
15
|
rgen |
|- A. x e. NN0_s ( ( bday |` NN0_s ) ` x ) e. _om |
| 17 |
|
fnfvrnss |
|- ( ( ( bday |` NN0_s ) Fn NN0_s /\ A. x e. NN0_s ( ( bday |` NN0_s ) ` x ) e. _om ) -> ran ( bday |` NN0_s ) C_ _om ) |
| 18 |
12 16 17
|
mp2an |
|- ran ( bday |` NN0_s ) C_ _om |
| 19 |
|
eqeq2 |
|- ( b = (/) -> ( ( bday ` y ) = b <-> ( bday ` y ) = (/) ) ) |
| 20 |
19
|
rexbidv |
|- ( b = (/) -> ( E. y e. NN0_s ( bday ` y ) = b <-> E. y e. NN0_s ( bday ` y ) = (/) ) ) |
| 21 |
|
eqeq2 |
|- ( b = a -> ( ( bday ` y ) = b <-> ( bday ` y ) = a ) ) |
| 22 |
21
|
rexbidv |
|- ( b = a -> ( E. y e. NN0_s ( bday ` y ) = b <-> E. y e. NN0_s ( bday ` y ) = a ) ) |
| 23 |
|
eqeq2 |
|- ( b = suc a -> ( ( bday ` y ) = b <-> ( bday ` y ) = suc a ) ) |
| 24 |
23
|
rexbidv |
|- ( b = suc a -> ( E. y e. NN0_s ( bday ` y ) = b <-> E. y e. NN0_s ( bday ` y ) = suc a ) ) |
| 25 |
|
fveqeq2 |
|- ( y = z -> ( ( bday ` y ) = suc a <-> ( bday ` z ) = suc a ) ) |
| 26 |
25
|
cbvrexvw |
|- ( E. y e. NN0_s ( bday ` y ) = suc a <-> E. z e. NN0_s ( bday ` z ) = suc a ) |
| 27 |
24 26
|
bitrdi |
|- ( b = suc a -> ( E. y e. NN0_s ( bday ` y ) = b <-> E. z e. NN0_s ( bday ` z ) = suc a ) ) |
| 28 |
|
eqeq2 |
|- ( b = x -> ( ( bday ` y ) = b <-> ( bday ` y ) = x ) ) |
| 29 |
28
|
rexbidv |
|- ( b = x -> ( E. y e. NN0_s ( bday ` y ) = b <-> E. y e. NN0_s ( bday ` y ) = x ) ) |
| 30 |
|
0n0s |
|- 0s e. NN0_s |
| 31 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
| 32 |
|
fveqeq2 |
|- ( y = 0s -> ( ( bday ` y ) = (/) <-> ( bday ` 0s ) = (/) ) ) |
| 33 |
32
|
rspcev |
|- ( ( 0s e. NN0_s /\ ( bday ` 0s ) = (/) ) -> E. y e. NN0_s ( bday ` y ) = (/) ) |
| 34 |
30 31 33
|
mp2an |
|- E. y e. NN0_s ( bday ` y ) = (/) |
| 35 |
|
fveqeq2 |
|- ( z = ( y +s 1s ) -> ( ( bday ` z ) = suc ( bday ` y ) <-> ( bday ` ( y +s 1s ) ) = suc ( bday ` y ) ) ) |
| 36 |
|
peano2n0s |
|- ( y e. NN0_s -> ( y +s 1s ) e. NN0_s ) |
| 37 |
|
bdayn0p1 |
|- ( y e. NN0_s -> ( bday ` ( y +s 1s ) ) = suc ( bday ` y ) ) |
| 38 |
35 36 37
|
rspcedvdw |
|- ( y e. NN0_s -> E. z e. NN0_s ( bday ` z ) = suc ( bday ` y ) ) |
| 39 |
38
|
adantl |
|- ( ( a e. _om /\ y e. NN0_s ) -> E. z e. NN0_s ( bday ` z ) = suc ( bday ` y ) ) |
| 40 |
|
suceq |
|- ( ( bday ` y ) = a -> suc ( bday ` y ) = suc a ) |
| 41 |
40
|
eqeq2d |
|- ( ( bday ` y ) = a -> ( ( bday ` z ) = suc ( bday ` y ) <-> ( bday ` z ) = suc a ) ) |
| 42 |
41
|
rexbidv |
|- ( ( bday ` y ) = a -> ( E. z e. NN0_s ( bday ` z ) = suc ( bday ` y ) <-> E. z e. NN0_s ( bday ` z ) = suc a ) ) |
| 43 |
39 42
|
syl5ibcom |
|- ( ( a e. _om /\ y e. NN0_s ) -> ( ( bday ` y ) = a -> E. z e. NN0_s ( bday ` z ) = suc a ) ) |
| 44 |
43
|
rexlimdva |
|- ( a e. _om -> ( E. y e. NN0_s ( bday ` y ) = a -> E. z e. NN0_s ( bday ` z ) = suc a ) ) |
| 45 |
20 22 27 29 34 44
|
finds |
|- ( x e. _om -> E. y e. NN0_s ( bday ` y ) = x ) |
| 46 |
|
fvelrnb |
|- ( ( bday |` NN0_s ) Fn NN0_s -> ( x e. ran ( bday |` NN0_s ) <-> E. y e. NN0_s ( ( bday |` NN0_s ) ` y ) = x ) ) |
| 47 |
12 46
|
ax-mp |
|- ( x e. ran ( bday |` NN0_s ) <-> E. y e. NN0_s ( ( bday |` NN0_s ) ` y ) = x ) |
| 48 |
|
fvres |
|- ( y e. NN0_s -> ( ( bday |` NN0_s ) ` y ) = ( bday ` y ) ) |
| 49 |
48
|
eqeq1d |
|- ( y e. NN0_s -> ( ( ( bday |` NN0_s ) ` y ) = x <-> ( bday ` y ) = x ) ) |
| 50 |
49
|
rexbiia |
|- ( E. y e. NN0_s ( ( bday |` NN0_s ) ` y ) = x <-> E. y e. NN0_s ( bday ` y ) = x ) |
| 51 |
47 50
|
bitri |
|- ( x e. ran ( bday |` NN0_s ) <-> E. y e. NN0_s ( bday ` y ) = x ) |
| 52 |
45 51
|
sylibr |
|- ( x e. _om -> x e. ran ( bday |` NN0_s ) ) |
| 53 |
52
|
ssriv |
|- _om C_ ran ( bday |` NN0_s ) |
| 54 |
18 53
|
eqssi |
|- ran ( bday |` NN0_s ) = _om |
| 55 |
|
df-fo |
|- ( ( bday |` NN0_s ) : NN0_s -onto-> _om <-> ( ( bday |` NN0_s ) Fn NN0_s /\ ran ( bday |` NN0_s ) = _om ) ) |
| 56 |
12 54 55
|
mpbir2an |
|- ( bday |` NN0_s ) : NN0_s -onto-> _om |
| 57 |
|
fof |
|- ( ( bday |` NN0_s ) : NN0_s -onto-> _om -> ( bday |` NN0_s ) : NN0_s --> _om ) |
| 58 |
56 57
|
ax-mp |
|- ( bday |` NN0_s ) : NN0_s --> _om |
| 59 |
13 48
|
eqeqan12d |
|- ( ( x e. NN0_s /\ y e. NN0_s ) -> ( ( ( bday |` NN0_s ) ` x ) = ( ( bday |` NN0_s ) ` y ) <-> ( bday ` x ) = ( bday ` y ) ) ) |
| 60 |
|
n0ons |
|- ( x e. NN0_s -> x e. On_s ) |
| 61 |
|
n0ons |
|- ( y e. NN0_s -> y e. On_s ) |
| 62 |
|
bday11on |
|- ( ( x e. On_s /\ y e. On_s /\ ( bday ` x ) = ( bday ` y ) ) -> x = y ) |
| 63 |
62
|
3expia |
|- ( ( x e. On_s /\ y e. On_s ) -> ( ( bday ` x ) = ( bday ` y ) -> x = y ) ) |
| 64 |
60 61 63
|
syl2an |
|- ( ( x e. NN0_s /\ y e. NN0_s ) -> ( ( bday ` x ) = ( bday ` y ) -> x = y ) ) |
| 65 |
59 64
|
sylbid |
|- ( ( x e. NN0_s /\ y e. NN0_s ) -> ( ( ( bday |` NN0_s ) ` x ) = ( ( bday |` NN0_s ) ` y ) -> x = y ) ) |
| 66 |
65
|
rgen2 |
|- A. x e. NN0_s A. y e. NN0_s ( ( ( bday |` NN0_s ) ` x ) = ( ( bday |` NN0_s ) ` y ) -> x = y ) |
| 67 |
|
dff13 |
|- ( ( bday |` NN0_s ) : NN0_s -1-1-> _om <-> ( ( bday |` NN0_s ) : NN0_s --> _om /\ A. x e. NN0_s A. y e. NN0_s ( ( ( bday |` NN0_s ) ` x ) = ( ( bday |` NN0_s ) ` y ) -> x = y ) ) ) |
| 68 |
58 66 67
|
mpbir2an |
|- ( bday |` NN0_s ) : NN0_s -1-1-> _om |
| 69 |
|
df-f1o |
|- ( ( bday |` NN0_s ) : NN0_s -1-1-onto-> _om <-> ( ( bday |` NN0_s ) : NN0_s -1-1-> _om /\ ( bday |` NN0_s ) : NN0_s -onto-> _om ) ) |
| 70 |
68 56 69
|
mpbir2an |
|- ( bday |` NN0_s ) : NN0_s -1-1-onto-> _om |