| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0sleltp1 |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M <_s N <-> M |
| 2 |
|
n0sno |
|- ( M e. NN0_s -> M e. No ) |
| 3 |
2
|
adantr |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> M e. No ) |
| 4 |
|
n0sno |
|- ( N e. NN0_s -> N e. No ) |
| 5 |
4
|
adantl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> N e. No ) |
| 6 |
|
peano2no |
|- ( N e. No -> ( N +s 1s ) e. No ) |
| 7 |
5 6
|
syl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( N +s 1s ) e. No ) |
| 8 |
|
1sno |
|- 1s e. No |
| 9 |
8
|
a1i |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> 1s e. No ) |
| 10 |
3 7 9
|
sltsub1d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M ( M -s 1s ) |
| 11 |
|
pncans |
|- ( ( N e. No /\ 1s e. No ) -> ( ( N +s 1s ) -s 1s ) = N ) |
| 12 |
4 8 11
|
sylancl |
|- ( N e. NN0_s -> ( ( N +s 1s ) -s 1s ) = N ) |
| 13 |
12
|
adantl |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( N +s 1s ) -s 1s ) = N ) |
| 14 |
13
|
breq2d |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( ( M -s 1s ) ( M -s 1s ) |
| 15 |
1 10 14
|
3bitrd |
|- ( ( M e. NN0_s /\ N e. NN0_s ) -> ( M <_s N <-> ( M -s 1s ) |