Metamath Proof Explorer


Theorem nfixp

Description: Bound-variable hypothesis builder for indexed Cartesian product. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfixpw when possible. (Contributed by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfixp.1 𝑦 𝐴
nfixp.2 𝑦 𝐵
Assertion nfixp 𝑦 X 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 nfixp.1 𝑦 𝐴
2 nfixp.2 𝑦 𝐵
3 df-ixp X 𝑥𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ) }
4 nfcv 𝑦 𝑧
5 nftru 𝑥
6 nfcvf ( ¬ ∀ 𝑦 𝑦 = 𝑥 𝑦 𝑥 )
7 6 adantl ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → 𝑦 𝑥 )
8 1 a1i ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → 𝑦 𝐴 )
9 7 8 nfeld ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑥𝐴 )
10 5 9 nfabd2 ( ⊤ → 𝑦 { 𝑥𝑥𝐴 } )
11 10 mptru 𝑦 { 𝑥𝑥𝐴 }
12 4 11 nffn 𝑦 𝑧 Fn { 𝑥𝑥𝐴 }
13 df-ral ( ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑧𝑥 ) ∈ 𝐵 ) )
14 4 a1i ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → 𝑦 𝑧 )
15 14 7 nffvd ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → 𝑦 ( 𝑧𝑥 ) )
16 2 a1i ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → 𝑦 𝐵 )
17 15 16 nfeld ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑧𝑥 ) ∈ 𝐵 )
18 9 17 nfimd ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥𝐴 → ( 𝑧𝑥 ) ∈ 𝐵 ) )
19 5 18 nfald2 ( ⊤ → Ⅎ 𝑦𝑥 ( 𝑥𝐴 → ( 𝑧𝑥 ) ∈ 𝐵 ) )
20 19 mptru 𝑦𝑥 ( 𝑥𝐴 → ( 𝑧𝑥 ) ∈ 𝐵 )
21 13 20 nfxfr 𝑦𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵
22 12 21 nfan 𝑦 ( 𝑧 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 )
23 22 nfab 𝑦 { 𝑧 ∣ ( 𝑧 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ) }
24 3 23 nfcxfr 𝑦 X 𝑥𝐴 𝐵