Metamath Proof Explorer


Theorem nfscott

Description: Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis nfscott.1 𝑥 𝐴
Assertion nfscott 𝑥 Scott 𝐴

Proof

Step Hyp Ref Expression
1 nfscott.1 𝑥 𝐴
2 df-scott Scott 𝐴 = { 𝑦𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) }
3 nfv 𝑥 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 )
4 1 3 nfralw 𝑥𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 )
5 4 1 nfrabw 𝑥 { 𝑦𝐴 ∣ ∀ 𝑧𝐴 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) }
6 2 5 nfcxfr 𝑥 Scott 𝐴