Metamath Proof Explorer


Theorem nic-luk3

Description: Proof of luk-3 from nic-ax and nic-mp . (Contributed by Jeff Hoffman, 18-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-luk3 ( 𝜑 → ( ¬ 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 nic-dfim ( ( ( ¬ 𝜑 ⊼ ( 𝜓𝜓 ) ) ⊼ ( ¬ 𝜑𝜓 ) ) ⊼ ( ( ( ¬ 𝜑 ⊼ ( 𝜓𝜓 ) ) ⊼ ( ¬ 𝜑 ⊼ ( 𝜓𝜓 ) ) ) ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) ) )
2 1 nic-bi1 ( ( ¬ 𝜑 ⊼ ( 𝜓𝜓 ) ) ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) )
3 nic-dfneg ( ( ( 𝜑𝜑 ) ⊼ ¬ 𝜑 ) ⊼ ( ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ⊼ ( ¬ 𝜑 ⊼ ¬ 𝜑 ) ) )
4 3 nic-bi2 ( ¬ 𝜑 ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) )
5 nic-id ( 𝜑 ⊼ ( 𝜑𝜑 ) )
6 4 5 nic-iimp1 ( 𝜑 ⊼ ¬ 𝜑 )
7 2 6 nic-iimp2 ( 𝜑 ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) )
8 nic-dfim ( ( ( 𝜑 ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) ) ⊼ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ) ⊼ ( ( ( 𝜑 ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) ) ⊼ ( 𝜑 ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) ) ) ⊼ ( ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ⊼ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ) ) )
9 8 nic-bi1 ( ( 𝜑 ⊼ ( ( ¬ 𝜑𝜓 ) ⊼ ( ¬ 𝜑𝜓 ) ) ) ⊼ ( ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ⊼ ( 𝜑 → ( ¬ 𝜑𝜓 ) ) ) )
10 7 9 nic-mp ( 𝜑 → ( ¬ 𝜑𝜓 ) )