| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nic-dfim | ⊢ ( ( ( ¬  𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) )  ⊼  ( ¬  𝜑  →  𝜓 ) )  ⊼  ( ( ( ¬  𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) )  ⊼  ( ¬  𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) ) )  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) ) ) | 
						
							| 2 | 1 | nic-bi1 | ⊢ ( ( ¬  𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) )  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) ) | 
						
							| 3 |  | nic-dfneg | ⊢ ( ( ( 𝜑  ⊼  𝜑 )  ⊼  ¬  𝜑 )  ⊼  ( ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) )  ⊼  ( ¬  𝜑  ⊼  ¬  𝜑 ) ) ) | 
						
							| 4 | 3 | nic-bi2 | ⊢ ( ¬  𝜑  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) ) ) | 
						
							| 5 |  | nic-id | ⊢ ( 𝜑  ⊼  ( 𝜑  ⊼  𝜑 ) ) | 
						
							| 6 | 4 5 | nic-iimp1 | ⊢ ( 𝜑  ⊼  ¬  𝜑 ) | 
						
							| 7 | 2 6 | nic-iimp2 | ⊢ ( 𝜑  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) ) | 
						
							| 8 |  | nic-dfim | ⊢ ( ( ( 𝜑  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) )  ⊼  ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) ) )  ⊼  ( ( ( 𝜑  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) )  ⊼  ( 𝜑  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) ) )  ⊼  ( ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) )  ⊼  ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) ) ) ) ) | 
						
							| 9 | 8 | nic-bi1 | ⊢ ( ( 𝜑  ⊼  ( ( ¬  𝜑  →  𝜓 )  ⊼  ( ¬  𝜑  →  𝜓 ) ) )  ⊼  ( ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) )  ⊼  ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) ) ) ) | 
						
							| 10 | 7 9 | nic-mp | ⊢ ( 𝜑  →  ( ¬  𝜑  →  𝜓 ) ) |