| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 · 𝑥 ) = ( 1 · 1 ) ) |
| 2 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 1 ) = 1 ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 · 𝑥 ) = ( 1 · 𝑦 ) ) |
| 5 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑦 ) = 𝑦 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 · 𝑥 ) = ( 1 · ( 𝑦 + 1 ) ) ) |
| 8 |
|
id |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → 𝑥 = ( 𝑦 + 1 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1 · 𝑥 ) = ( 1 · 𝐴 ) ) |
| 11 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝐴 ) = 𝐴 ) ) |
| 13 |
|
1t1e1ALT |
⊢ ( 1 · 1 ) = 1 |
| 14 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → 1 ∈ ℂ ) |
| 15 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → 𝑦 ∈ ℕ ) |
| 16 |
15
|
nncnd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → 𝑦 ∈ ℂ ) |
| 17 |
14 16 14
|
adddid |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → ( 1 · ( 𝑦 + 1 ) ) = ( ( 1 · 𝑦 ) + ( 1 · 1 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → ( 1 · 𝑦 ) = 𝑦 ) |
| 19 |
13
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → ( 1 · 1 ) = 1 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → ( ( 1 · 𝑦 ) + ( 1 · 1 ) ) = ( 𝑦 + 1 ) ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 1 · 𝑦 ) = 𝑦 ) → ( 1 · ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) ) |
| 22 |
21
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( 1 · 𝑦 ) = 𝑦 → ( 1 · ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) ) ) |
| 23 |
3 6 9 12 13 22
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 1 · 𝐴 ) = 𝐴 ) |
| 24 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
| 25 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
| 26 |
24 25
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) = 𝐴 ) |
| 27 |
23 26
|
eqtr4d |
⊢ ( 𝐴 ∈ ℕ → ( 1 · 𝐴 ) = ( 𝐴 · 1 ) ) |