Metamath Proof Explorer


Theorem nnmul1com

Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom . Since ( A x. 1 ) is A by ax-1rid , this is equivalent to remullid for natural numbers, but using fewer axioms (avoiding ax-resscn , ax-addass , ax-mulass , ax-rnegex , ax-pre-lttri , ax-pre-lttrn , ax-pre-ltadd ). (Contributed by SN, 5-Feb-2024)

Ref Expression
Assertion nnmul1com A1A=A1

Proof

Step Hyp Ref Expression
1 oveq2 x=11x=11
2 id x=1x=1
3 1 2 eqeq12d x=11x=x11=1
4 oveq2 x=y1x=1y
5 id x=yx=y
6 4 5 eqeq12d x=y1x=x1y=y
7 oveq2 x=y+11x=1y+1
8 id x=y+1x=y+1
9 7 8 eqeq12d x=y+11x=x1y+1=y+1
10 oveq2 x=A1x=1A
11 id x=Ax=A
12 10 11 eqeq12d x=A1x=x1A=A
13 1t1e1ALT 11=1
14 1cnd y1y=y1
15 simpl y1y=yy
16 15 nncnd y1y=yy
17 14 16 14 adddid y1y=y1y+1=1y+11
18 simpr y1y=y1y=y
19 13 a1i y1y=y11=1
20 18 19 oveq12d y1y=y1y+11=y+1
21 17 20 eqtrd y1y=y1y+1=y+1
22 21 ex y1y=y1y+1=y+1
23 3 6 9 12 13 22 nnind A1A=A
24 nnre AA
25 ax-1rid AA1=A
26 24 25 syl AA1=A
27 23 26 eqtr4d A1A=A1