Description: Multiplication with 1 is commutative for natural numbers, without ax-mulcom . Since ( A x. 1 ) is A by ax-1rid , this is equivalent to remullid for natural numbers, but using fewer axioms (avoiding ax-resscn , ax-addass , ax-mulass , ax-rnegex , ax-pre-lttri , ax-pre-lttrn , ax-pre-ltadd ). (Contributed by SN, 5-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nnmul1com | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | id | |
|
3 | 1 2 | eqeq12d | |
4 | oveq2 | |
|
5 | id | |
|
6 | 4 5 | eqeq12d | |
7 | oveq2 | |
|
8 | id | |
|
9 | 7 8 | eqeq12d | |
10 | oveq2 | |
|
11 | id | |
|
12 | 10 11 | eqeq12d | |
13 | 1t1e1ALT | |
|
14 | 1cnd | |
|
15 | simpl | |
|
16 | 15 | nncnd | |
17 | 14 16 14 | adddid | |
18 | simpr | |
|
19 | 13 | a1i | |
20 | 18 19 | oveq12d | |
21 | 17 20 | eqtrd | |
22 | 21 | ex | |
23 | 3 6 9 12 13 22 | nnind | |
24 | nnre | |
|
25 | ax-1rid | |
|
26 | 24 25 | syl | |
27 | 23 26 | eqtr4d | |