Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq1 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq1 |
|
10 |
|
oveq2 |
|
11 |
9 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq1 |
|
14 |
|
oveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
imbi2d |
|
17 |
|
nnmul1com |
|
18 |
|
simp3 |
|
19 |
17
|
3ad2ant2 |
|
20 |
18 19
|
oveq12d |
|
21 |
|
simp1 |
|
22 |
|
1nn |
|
23 |
22
|
a1i |
|
24 |
|
simp2 |
|
25 |
|
nnadddir |
|
26 |
21 23 24 25
|
syl3anc |
|
27 |
24
|
nncnd |
|
28 |
21
|
nncnd |
|
29 |
|
1cnd |
|
30 |
27 28 29
|
adddid |
|
31 |
20 26 30
|
3eqtr4d |
|
32 |
31
|
3exp |
|
33 |
32
|
a2d |
|
34 |
4 8 12 16 17 33
|
nnind |
|
35 |
34
|
imp |
|