| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 | 3 | imbi2d |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 5 6 | eqeq12d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | oveq1 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 9 10 | eqeq12d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 | 15 | imbi2d |  | 
						
							| 17 |  | nnmul1com |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 | 17 | 3ad2ant2 |  | 
						
							| 20 | 18 19 | oveq12d |  | 
						
							| 21 |  | simp1 |  | 
						
							| 22 |  | 1nn |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | simp2 |  | 
						
							| 25 |  | nnadddir |  | 
						
							| 26 | 21 23 24 25 | syl3anc |  | 
						
							| 27 | 24 | nncnd |  | 
						
							| 28 | 21 | nncnd |  | 
						
							| 29 |  | 1cnd |  | 
						
							| 30 | 27 28 29 | adddid |  | 
						
							| 31 | 20 26 30 | 3eqtr4d |  | 
						
							| 32 | 31 | 3exp |  | 
						
							| 33 | 32 | a2d |  | 
						
							| 34 | 4 8 12 16 17 33 | nnind |  | 
						
							| 35 | 34 | imp |  |