| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( x = 1 -> ( x x. B ) = ( 1 x. B ) ) | 
						
							| 2 |  | oveq2 |  |-  ( x = 1 -> ( B x. x ) = ( B x. 1 ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( x = 1 -> ( ( x x. B ) = ( B x. x ) <-> ( 1 x. B ) = ( B x. 1 ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( x = 1 -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( 1 x. B ) = ( B x. 1 ) ) ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = y -> ( x x. B ) = ( y x. B ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = y -> ( B x. x ) = ( B x. y ) ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( x = y -> ( ( x x. B ) = ( B x. x ) <-> ( y x. B ) = ( B x. y ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( x = y -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( y x. B ) = ( B x. y ) ) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( x = ( y + 1 ) -> ( x x. B ) = ( ( y + 1 ) x. B ) ) | 
						
							| 10 |  | oveq2 |  |-  ( x = ( y + 1 ) -> ( B x. x ) = ( B x. ( y + 1 ) ) ) | 
						
							| 11 | 9 10 | eqeq12d |  |-  ( x = ( y + 1 ) -> ( ( x x. B ) = ( B x. x ) <-> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = ( y + 1 ) -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = A -> ( x x. B ) = ( A x. B ) ) | 
						
							| 14 |  | oveq2 |  |-  ( x = A -> ( B x. x ) = ( B x. A ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( x = A -> ( ( x x. B ) = ( B x. x ) <-> ( A x. B ) = ( B x. A ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = A -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( A x. B ) = ( B x. A ) ) ) ) | 
						
							| 17 |  | nnmul1com |  |-  ( B e. NN -> ( 1 x. B ) = ( B x. 1 ) ) | 
						
							| 18 |  | simp3 |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( y x. B ) = ( B x. y ) ) | 
						
							| 19 | 17 | 3ad2ant2 |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( 1 x. B ) = ( B x. 1 ) ) | 
						
							| 20 | 18 19 | oveq12d |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y x. B ) + ( 1 x. B ) ) = ( ( B x. y ) + ( B x. 1 ) ) ) | 
						
							| 21 |  | simp1 |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> y e. NN ) | 
						
							| 22 |  | 1nn |  |-  1 e. NN | 
						
							| 23 | 22 | a1i |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> 1 e. NN ) | 
						
							| 24 |  | simp2 |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> B e. NN ) | 
						
							| 25 |  | nnadddir |  |-  ( ( y e. NN /\ 1 e. NN /\ B e. NN ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + ( 1 x. B ) ) ) | 
						
							| 26 | 21 23 24 25 | syl3anc |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + ( 1 x. B ) ) ) | 
						
							| 27 | 24 | nncnd |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> B e. CC ) | 
						
							| 28 | 21 | nncnd |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> y e. CC ) | 
						
							| 29 |  | 1cnd |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> 1 e. CC ) | 
						
							| 30 | 27 28 29 | adddid |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( B x. ( y + 1 ) ) = ( ( B x. y ) + ( B x. 1 ) ) ) | 
						
							| 31 | 20 26 30 | 3eqtr4d |  |-  ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) | 
						
							| 32 | 31 | 3exp |  |-  ( y e. NN -> ( B e. NN -> ( ( y x. B ) = ( B x. y ) -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) | 
						
							| 33 | 32 | a2d |  |-  ( y e. NN -> ( ( B e. NN -> ( y x. B ) = ( B x. y ) ) -> ( B e. NN -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) | 
						
							| 34 | 4 8 12 16 17 33 | nnind |  |-  ( A e. NN -> ( B e. NN -> ( A x. B ) = ( B x. A ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( A e. NN /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) |