Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( x = 1 -> ( x x. B ) = ( 1 x. B ) ) |
2 |
|
oveq2 |
|- ( x = 1 -> ( B x. x ) = ( B x. 1 ) ) |
3 |
1 2
|
eqeq12d |
|- ( x = 1 -> ( ( x x. B ) = ( B x. x ) <-> ( 1 x. B ) = ( B x. 1 ) ) ) |
4 |
3
|
imbi2d |
|- ( x = 1 -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( 1 x. B ) = ( B x. 1 ) ) ) ) |
5 |
|
oveq1 |
|- ( x = y -> ( x x. B ) = ( y x. B ) ) |
6 |
|
oveq2 |
|- ( x = y -> ( B x. x ) = ( B x. y ) ) |
7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( x x. B ) = ( B x. x ) <-> ( y x. B ) = ( B x. y ) ) ) |
8 |
7
|
imbi2d |
|- ( x = y -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( y x. B ) = ( B x. y ) ) ) ) |
9 |
|
oveq1 |
|- ( x = ( y + 1 ) -> ( x x. B ) = ( ( y + 1 ) x. B ) ) |
10 |
|
oveq2 |
|- ( x = ( y + 1 ) -> ( B x. x ) = ( B x. ( y + 1 ) ) ) |
11 |
9 10
|
eqeq12d |
|- ( x = ( y + 1 ) -> ( ( x x. B ) = ( B x. x ) <-> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) |
12 |
11
|
imbi2d |
|- ( x = ( y + 1 ) -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) |
13 |
|
oveq1 |
|- ( x = A -> ( x x. B ) = ( A x. B ) ) |
14 |
|
oveq2 |
|- ( x = A -> ( B x. x ) = ( B x. A ) ) |
15 |
13 14
|
eqeq12d |
|- ( x = A -> ( ( x x. B ) = ( B x. x ) <-> ( A x. B ) = ( B x. A ) ) ) |
16 |
15
|
imbi2d |
|- ( x = A -> ( ( B e. NN -> ( x x. B ) = ( B x. x ) ) <-> ( B e. NN -> ( A x. B ) = ( B x. A ) ) ) ) |
17 |
|
nnmul1com |
|- ( B e. NN -> ( 1 x. B ) = ( B x. 1 ) ) |
18 |
|
simp3 |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( y x. B ) = ( B x. y ) ) |
19 |
17
|
3ad2ant2 |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( 1 x. B ) = ( B x. 1 ) ) |
20 |
18 19
|
oveq12d |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y x. B ) + ( 1 x. B ) ) = ( ( B x. y ) + ( B x. 1 ) ) ) |
21 |
|
simp1 |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> y e. NN ) |
22 |
|
1nn |
|- 1 e. NN |
23 |
22
|
a1i |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> 1 e. NN ) |
24 |
|
simp2 |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> B e. NN ) |
25 |
|
nnadddir |
|- ( ( y e. NN /\ 1 e. NN /\ B e. NN ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + ( 1 x. B ) ) ) |
26 |
21 23 24 25
|
syl3anc |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y + 1 ) x. B ) = ( ( y x. B ) + ( 1 x. B ) ) ) |
27 |
24
|
nncnd |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> B e. CC ) |
28 |
21
|
nncnd |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> y e. CC ) |
29 |
|
1cnd |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> 1 e. CC ) |
30 |
27 28 29
|
adddid |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( B x. ( y + 1 ) ) = ( ( B x. y ) + ( B x. 1 ) ) ) |
31 |
20 26 30
|
3eqtr4d |
|- ( ( y e. NN /\ B e. NN /\ ( y x. B ) = ( B x. y ) ) -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) |
32 |
31
|
3exp |
|- ( y e. NN -> ( B e. NN -> ( ( y x. B ) = ( B x. y ) -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) |
33 |
32
|
a2d |
|- ( y e. NN -> ( ( B e. NN -> ( y x. B ) = ( B x. y ) ) -> ( B e. NN -> ( ( y + 1 ) x. B ) = ( B x. ( y + 1 ) ) ) ) ) |
34 |
4 8 12 16 17 33
|
nnind |
|- ( A e. NN -> ( B e. NN -> ( A x. B ) = ( B x. A ) ) ) |
35 |
34
|
imp |
|- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) = ( B x. A ) ) |