| Step |
Hyp |
Ref |
Expression |
| 1 |
|
norm-ii.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
norm-ii.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
1re |
⊢ 1 ∈ ℝ |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
4
|
cjrebi |
⊢ ( 1 ∈ ℝ ↔ ( ∗ ‘ 1 ) = 1 ) |
| 6 |
3 5
|
mpbi |
⊢ ( ∗ ‘ 1 ) = 1 |
| 7 |
6
|
oveq1i |
⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) = ( 1 · ( 𝐵 ·ih 𝐴 ) ) |
| 8 |
2 1
|
hicli |
⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 9 |
8
|
mullidi |
⊢ ( 1 · ( 𝐵 ·ih 𝐴 ) ) = ( 𝐵 ·ih 𝐴 ) |
| 10 |
7 9
|
eqtri |
⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) = ( 𝐵 ·ih 𝐴 ) |
| 11 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 12 |
11
|
mullidi |
⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) |
| 13 |
10 12
|
oveq12i |
⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 14 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 15 |
4 2 1 14
|
normlem7 |
⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 16 |
13 15
|
eqbrtrri |
⊢ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 17 |
|
eqid |
⊢ - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) = - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 18 |
4 2 1 17
|
normlem2 |
⊢ - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ |
| 19 |
4
|
cjcli |
⊢ ( ∗ ‘ 1 ) ∈ ℂ |
| 20 |
19 8
|
mulcli |
⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 21 |
4 11
|
mulcli |
⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 22 |
20 21
|
addcli |
⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ |
| 23 |
22
|
negrebi |
⊢ ( - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ↔ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) |
| 24 |
18 23
|
mpbi |
⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ |
| 25 |
13 24
|
eqeltrri |
⊢ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ |
| 26 |
|
2re |
⊢ 2 ∈ ℝ |
| 27 |
|
hiidge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
| 28 |
1 27
|
ax-mp |
⊢ 0 ≤ ( 𝐴 ·ih 𝐴 ) |
| 29 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
| 30 |
1 29
|
ax-mp |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
| 31 |
30
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
| 32 |
28 31
|
ax-mp |
⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ |
| 33 |
|
hiidge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) |
| 34 |
2 33
|
ax-mp |
⊢ 0 ≤ ( 𝐵 ·ih 𝐵 ) |
| 35 |
|
hiidrcl |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) |
| 36 |
2 35
|
ax-mp |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
| 37 |
36
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ ) |
| 38 |
34 37
|
ax-mp |
⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
| 39 |
32 38
|
remulcli |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℝ |
| 40 |
26 39
|
remulcli |
⊢ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ∈ ℝ |
| 41 |
30 36
|
readdcli |
⊢ ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
| 42 |
25 40 41
|
leadd2i |
⊢ ( ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ↔ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) ) |
| 43 |
16 42
|
mpbi |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 44 |
1 2 1 2
|
normlem8 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 45 |
11 8
|
addcomi |
⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 46 |
45
|
oveq2i |
⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 47 |
44 46
|
eqtri |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 48 |
32
|
recni |
⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
| 49 |
38
|
recni |
⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 50 |
48 49
|
binom2i |
⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) |
| 51 |
48
|
sqcli |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) ∈ ℂ |
| 52 |
|
2cn |
⊢ 2 ∈ ℂ |
| 53 |
48 49
|
mulcli |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℂ |
| 54 |
52 53
|
mulcli |
⊢ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ∈ ℂ |
| 55 |
49
|
sqcli |
⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ∈ ℂ |
| 56 |
51 54 55
|
add32i |
⊢ ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 57 |
30
|
sqsqrti |
⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 58 |
28 57
|
ax-mp |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 59 |
36
|
sqsqrti |
⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) |
| 60 |
34 59
|
ax-mp |
⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) |
| 61 |
58 60
|
oveq12i |
⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 62 |
61
|
oveq1i |
⊢ ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 63 |
50 56 62
|
3eqtri |
⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 64 |
43 47 63
|
3brtr4i |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) |
| 65 |
1 2
|
hvaddcli |
⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 66 |
|
hiidge0 |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 67 |
65 66
|
ax-mp |
⊢ 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 68 |
32 38
|
readdcli |
⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℝ |
| 69 |
68
|
sqge0i |
⊢ 0 ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) |
| 70 |
|
hiidrcl |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) |
| 71 |
65 70
|
ax-mp |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ |
| 72 |
68
|
resqcli |
⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ∈ ℝ |
| 73 |
71 72
|
sqrtlei |
⊢ ( ( 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∧ 0 ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) ) ) |
| 74 |
67 69 73
|
mp2an |
⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) ) |
| 75 |
64 74
|
mpbi |
⊢ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) |
| 76 |
30
|
sqrtge0i |
⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 77 |
28 76
|
ax-mp |
⊢ 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 78 |
36
|
sqrtge0i |
⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 79 |
34 78
|
ax-mp |
⊢ 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 80 |
32 38
|
addge0i |
⊢ ( ( 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∧ 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) → 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 81 |
77 79 80
|
mp2an |
⊢ 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 82 |
68
|
sqrtsqi |
⊢ ( 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) → ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 83 |
81 82
|
ax-mp |
⊢ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 84 |
75 83
|
breqtri |
⊢ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 85 |
|
normval |
⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ) |
| 86 |
65 85
|
ax-mp |
⊢ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 87 |
|
normval |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 88 |
1 87
|
ax-mp |
⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 89 |
|
normval |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 90 |
2 89
|
ax-mp |
⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 91 |
88 90
|
oveq12i |
⊢ ( ( normℎ ‘ 𝐴 ) + ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 92 |
84 86 91
|
3brtr4i |
⊢ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) + ( normℎ ‘ 𝐵 ) ) |