Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npncan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐴 ) ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | npncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) | |
| 2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐴 ) ) | 
| 3 | subid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 𝐴 ) = 0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐴 ) = 0 ) | 
| 5 | 2 4 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) + ( 𝐵 − 𝐴 ) ) = 0 ) |