Metamath Proof Explorer


Theorem nrmsep2

Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep2 ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → 𝐽 ∈ Nrm )
2 simpr2 ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → 𝐷 ∈ ( Clsd ‘ 𝐽 ) )
3 eqid 𝐽 = 𝐽
4 3 cldopn ( 𝐷 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐽𝐷 ) ∈ 𝐽 )
5 2 4 syl ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ( 𝐽𝐷 ) ∈ 𝐽 )
6 simpr1 ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → 𝐶 ∈ ( Clsd ‘ 𝐽 ) )
7 simpr3 ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ( 𝐶𝐷 ) = ∅ )
8 3 cldss ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 𝐽 )
9 reldisj ( 𝐶 𝐽 → ( ( 𝐶𝐷 ) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷 ) ) )
10 6 8 9 3syl ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ( ( 𝐶𝐷 ) = ∅ ↔ 𝐶 ⊆ ( 𝐽𝐷 ) ) )
11 7 10 mpbid ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → 𝐶 ⊆ ( 𝐽𝐷 ) )
12 nrmsep3 ( ( 𝐽 ∈ Nrm ∧ ( ( 𝐽𝐷 ) ∈ 𝐽𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐶 ⊆ ( 𝐽𝐷 ) ) ) → ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( 𝐽𝐷 ) ) )
13 1 5 6 11 12 syl13anc ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( 𝐽𝐷 ) ) )
14 ssdifin0 ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( 𝐽𝐷 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ )
15 14 anim2i ( ( 𝐶𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( 𝐽𝐷 ) ) → ( 𝐶𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) )
16 15 reximi ( ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ ( 𝐽𝐷 ) ) → ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) )
17 13 16 syl ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶𝐷 ) = ∅ ) ) → ∃ 𝑥𝐽 ( 𝐶𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) )