Metamath Proof Explorer


Theorem nrmsep2

Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep2
|- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> J e. Nrm )
2 simpr2
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> D e. ( Clsd ` J ) )
3 eqid
 |-  U. J = U. J
4 3 cldopn
 |-  ( D e. ( Clsd ` J ) -> ( U. J \ D ) e. J )
5 2 4 syl
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( U. J \ D ) e. J )
6 simpr1
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> C e. ( Clsd ` J ) )
7 simpr3
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( C i^i D ) = (/) )
8 3 cldss
 |-  ( C e. ( Clsd ` J ) -> C C_ U. J )
9 reldisj
 |-  ( C C_ U. J -> ( ( C i^i D ) = (/) <-> C C_ ( U. J \ D ) ) )
10 6 8 9 3syl
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( ( C i^i D ) = (/) <-> C C_ ( U. J \ D ) ) )
11 7 10 mpbid
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> C C_ ( U. J \ D ) )
12 nrmsep3
 |-  ( ( J e. Nrm /\ ( ( U. J \ D ) e. J /\ C e. ( Clsd ` J ) /\ C C_ ( U. J \ D ) ) ) -> E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) )
13 1 5 6 11 12 syl13anc
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) )
14 ssdifin0
 |-  ( ( ( cls ` J ) ` x ) C_ ( U. J \ D ) -> ( ( ( cls ` J ) ` x ) i^i D ) = (/) )
15 14 anim2i
 |-  ( ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) -> ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) )
16 15 reximi
 |-  ( E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) )
17 13 16 syl
 |-  ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) )