| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝑋  ∈  𝑉  ↔  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | clwwlknon2num | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) | 
						
							| 4 | 2 3 | sylan2b | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾 ) | 
						
							| 6 |  | oveq1 | ⊢ ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  →  ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  mod  2 )  =  ( 𝐾  mod  2 ) ) | 
						
							| 7 | 6 | ad2antrr | ⊢ ( ( ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  2  ∥  ( 𝐾  −  1 ) )  →  ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  mod  2 )  =  ( 𝐾  mod  2 ) ) | 
						
							| 8 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 9 |  | nn0z | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℤ ) | 
						
							| 10 |  | modprm1div | ⊢ ( ( 2  ∈  ℙ  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  mod  2 )  =  1  ↔  2  ∥  ( 𝐾  −  1 ) ) ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝐾  mod  2 )  =  1  ↔  2  ∥  ( 𝐾  −  1 ) ) ) | 
						
							| 12 | 11 | biimprd | ⊢ ( 𝐾  ∈  ℕ0  →  ( 2  ∥  ( 𝐾  −  1 )  →  ( 𝐾  mod  2 )  =  1 ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 2  ∥  ( 𝐾  −  1 )  →  ( 𝐾  mod  2 )  =  1 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 ) )  →  ( 2  ∥  ( 𝐾  −  1 )  →  ( 𝐾  mod  2 )  =  1 ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  2  ∥  ( 𝐾  −  1 ) )  →  ( 𝐾  mod  2 )  =  1 ) | 
						
							| 16 | 7 15 | eqtrd | ⊢ ( ( ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 ) )  ∧  2  ∥  ( 𝐾  −  1 ) )  →  ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  mod  2 )  =  1 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  =  𝐾  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 ) )  →  ( 2  ∥  ( 𝐾  −  1 )  →  ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  mod  2 )  =  1 ) ) | 
						
							| 18 | 5 17 | mpancom | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑋  ∈  𝑉  ∧  𝐾  ∈  ℕ0 )  →  ( 2  ∥  ( 𝐾  −  1 )  →  ( ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) )  mod  2 )  =  1 ) ) |