| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | eleq2i |  |-  ( X e. V <-> X e. ( Vtx ` G ) ) | 
						
							| 3 |  | clwwlknon2num |  |-  ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) | 
						
							| 4 | 2 3 | sylan2b |  |-  ( ( G RegUSGraph K /\ X e. V ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) | 
						
							| 6 |  | oveq1 |  |-  ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = ( K mod 2 ) ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = ( K mod 2 ) ) | 
						
							| 8 |  | 2prm |  |-  2 e. Prime | 
						
							| 9 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 10 |  | modprm1div |  |-  ( ( 2 e. Prime /\ K e. ZZ ) -> ( ( K mod 2 ) = 1 <-> 2 || ( K - 1 ) ) ) | 
						
							| 11 | 8 9 10 | sylancr |  |-  ( K e. NN0 -> ( ( K mod 2 ) = 1 <-> 2 || ( K - 1 ) ) ) | 
						
							| 12 | 11 | biimprd |  |-  ( K e. NN0 -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( K mod 2 ) = 1 ) | 
						
							| 16 | 7 15 | eqtrd |  |-  ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) | 
						
							| 17 | 16 | ex |  |-  ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) | 
						
							| 18 | 5 17 | mpancom |  |-  ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |