| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simpl1 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> G RegUSGraph K ) | 
						
							| 3 |  | simpr1 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> X e. V ) | 
						
							| 4 | 1 | finrusgrfusgr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 6 | 5 | adantl |  |-  ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> G e. FinUSGraph ) | 
						
							| 7 |  | simpr1 |  |-  ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> G RegUSGraph K ) | 
						
							| 8 |  | ne0i |  |-  ( X e. V -> V =/= (/) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> V =/= (/) ) | 
						
							| 10 | 1 | frusgrnn0 |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) | 
						
							| 11 | 6 7 9 10 | syl3anc |  |-  ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> K e. NN0 ) | 
						
							| 12 | 11 | ex |  |-  ( X e. V -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> K e. NN0 ) | 
						
							| 15 | 2 3 14 | 3jca |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) | 
						
							| 16 |  | simpr3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> 2 || ( K - 1 ) ) | 
						
							| 17 | 1 | numclwwlk5lem |  |-  ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) | 
						
							| 18 | 15 16 17 | sylc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) | 
						
							| 19 | 18 | a1i |  |-  ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) | 
						
							| 20 |  | eleq1 |  |-  ( P = 2 -> ( P e. Prime <-> 2 e. Prime ) ) | 
						
							| 21 |  | breq1 |  |-  ( P = 2 -> ( P || ( K - 1 ) <-> 2 || ( K - 1 ) ) ) | 
						
							| 22 | 20 21 | 3anbi23d |  |-  ( P = 2 -> ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) <-> ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) ) | 
						
							| 23 | 22 | anbi2d |  |-  ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) <-> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( P = 2 -> ( X ( ClWWalksNOn ` G ) P ) = ( X ( ClWWalksNOn ` G ) 2 ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( P = 2 -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) ) | 
						
							| 26 |  | id |  |-  ( P = 2 -> P = 2 ) | 
						
							| 27 | 25 26 | oveq12d |  |-  ( P = 2 -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) ) | 
						
							| 28 | 27 | eqeq1d |  |-  ( P = 2 -> ( ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 <-> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) | 
						
							| 29 | 19 23 28 | 3imtr4d |  |-  ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) ) | 
						
							| 30 |  | 3simpa |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 33 |  | simprl3 |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> V e. Fin ) | 
						
							| 34 |  | simprr1 |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> X e. V ) | 
						
							| 35 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 36 |  | oddprmge3 |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) | 
						
							| 37 | 35 36 | sylbir |  |-  ( ( P e. Prime /\ P =/= 2 ) -> P e. ( ZZ>= ` 3 ) ) | 
						
							| 38 | 37 | ex |  |-  ( P e. Prime -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) | 
						
							| 41 | 40 | impcom |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> P e. ( ZZ>= ` 3 ) ) | 
						
							| 42 | 1 | numclwwlk3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ P e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) ) | 
						
							| 43 | 32 33 34 41 42 | syl13anc |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) ) | 
						
							| 45 | 12 | 3ad2ant1 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) | 
						
							| 46 | 45 | impcom |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. NN0 ) | 
						
							| 47 | 46 | nn0zd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. ZZ ) | 
						
							| 48 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 49 |  | zre |  |-  ( ( K - 1 ) e. ZZ -> ( K - 1 ) e. RR ) | 
						
							| 50 | 47 48 49 | 3syl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. RR ) | 
						
							| 51 |  | simpl3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> V e. Fin ) | 
						
							| 52 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) e. Fin ) | 
						
							| 53 |  | hashcl |  |-  ( ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) e. Fin -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. NN0 ) | 
						
							| 54 | 51 52 53 | 3syl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. NN0 ) | 
						
							| 55 | 54 | nn0red |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. RR ) | 
						
							| 56 | 50 55 | remulcld |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR ) | 
						
							| 57 | 46 | nn0red |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. RR ) | 
						
							| 58 |  | prmm2nn0 |  |-  ( P e. Prime -> ( P - 2 ) e. NN0 ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( P - 2 ) e. NN0 ) | 
						
							| 60 | 59 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P - 2 ) e. NN0 ) | 
						
							| 61 | 57 60 | reexpcld |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K ^ ( P - 2 ) ) e. RR ) | 
						
							| 62 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 63 | 62 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 64 | 63 | 3ad2ant2 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> P e. RR+ ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. RR+ ) | 
						
							| 66 | 56 61 65 | 3jca |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) | 
						
							| 68 |  | modaddabs |  |-  ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) ) | 
						
							| 69 | 68 | eqcomd |  |-  ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) = ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 70 | 67 69 | syl |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) = ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 71 | 62 | 3ad2ant2 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> P e. NN ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) | 
						
							| 73 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 74 | 46 73 48 | 3syl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) | 
						
							| 75 | 54 | nn0zd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) | 
						
							| 76 | 72 74 75 | 3jca |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. NN /\ ( K - 1 ) e. ZZ /\ ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) ) | 
						
							| 77 |  | simpr3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P || ( K - 1 ) ) | 
						
							| 78 |  | mulmoddvds |  |-  ( ( P e. NN /\ ( K - 1 ) e. ZZ /\ ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) -> ( P || ( K - 1 ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) = 0 ) ) | 
						
							| 79 | 76 77 78 | sylc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) = 0 ) | 
						
							| 80 |  | simpr2 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. Prime ) | 
						
							| 81 | 80 47 | jca |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. Prime /\ K e. ZZ ) ) | 
						
							| 82 |  | powm2modprm |  |-  ( ( P e. Prime /\ K e. ZZ ) -> ( P || ( K - 1 ) -> ( ( K ^ ( P - 2 ) ) mod P ) = 1 ) ) | 
						
							| 83 | 81 77 82 | sylc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K ^ ( P - 2 ) ) mod P ) = 1 ) | 
						
							| 84 | 79 83 | oveq12d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) = ( 0 + 1 ) ) | 
						
							| 85 | 84 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( 0 + 1 ) mod P ) ) | 
						
							| 86 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 87 | 86 | oveq1i |  |-  ( ( 0 + 1 ) mod P ) = ( 1 mod P ) | 
						
							| 88 | 62 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 89 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 90 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 91 | 88 89 90 | syl2anc |  |-  ( P e. Prime -> ( 1 mod P ) = 1 ) | 
						
							| 92 | 87 91 | eqtrid |  |-  ( P e. Prime -> ( ( 0 + 1 ) mod P ) = 1 ) | 
						
							| 93 | 92 | 3ad2ant2 |  |-  ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) | 
						
							| 95 | 85 94 | eqtrd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) | 
						
							| 96 | 95 | adantl |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) | 
						
							| 97 | 44 70 96 | 3eqtrd |  |-  ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) | 
						
							| 98 | 97 | ex |  |-  ( P =/= 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) ) | 
						
							| 99 | 29 98 | pm2.61ine |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) |