| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk7lem.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
finrusgrfusgr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
| 3 |
2
|
ad2ant2rl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G e. FinUSGraph ) |
| 4 |
|
simpll |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G RegUSGraph K ) |
| 5 |
|
simprl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> V =/= (/) ) |
| 6 |
1
|
frusgrnn0 |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) |
| 7 |
3 4 5 6
|
syl3anc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) |