| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk7lem.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | finrusgrfusgr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 3 | 2 | ad2ant2rl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G e. FinUSGraph ) | 
						
							| 4 |  | simpll |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G RegUSGraph K ) | 
						
							| 5 |  | simprl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> V =/= (/) ) | 
						
							| 6 | 1 | frusgrnn0 |  |-  ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) | 
						
							| 7 | 3 4 5 6 | syl3anc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) |