| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simp1 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> G e. FriendGraph ) | 
						
							| 3 | 2 | anim1ci |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 4 |  | simp3 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> V =/= (/) ) | 
						
							| 5 |  | simp2 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> V e. Fin ) | 
						
							| 6 | 4 5 | jca |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 8 | 1 | numclwwlk7lem |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) | 
						
							| 9 | 3 7 8 | syl2anc |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> K e. NN0 ) | 
						
							| 10 |  | 2z |  |-  2 e. ZZ | 
						
							| 11 | 10 | a1i |  |-  ( ( K e. NN0 /\ 2 < K ) -> 2 e. ZZ ) | 
						
							| 12 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 13 | 12 | adantr |  |-  ( ( K e. NN0 /\ 2 < K ) -> K e. ZZ ) | 
						
							| 14 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( K e. NN0 /\ 2 < K ) -> ( K - 1 ) e. ZZ ) | 
						
							| 16 |  | zltlem1 |  |-  ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 < K <-> 2 <_ ( K - 1 ) ) ) | 
						
							| 17 | 10 12 16 | sylancr |  |-  ( K e. NN0 -> ( 2 < K <-> 2 <_ ( K - 1 ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( K e. NN0 /\ 2 < K ) -> 2 <_ ( K - 1 ) ) | 
						
							| 19 |  | eluz2 |  |-  ( ( K - 1 ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( K - 1 ) e. ZZ /\ 2 <_ ( K - 1 ) ) ) | 
						
							| 20 | 11 15 18 19 | syl3anbrc |  |-  ( ( K e. NN0 /\ 2 < K ) -> ( K - 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 21 |  | exprmfct |  |-  ( ( K - 1 ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( K - 1 ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( K e. NN0 /\ 2 < K ) -> E. p e. Prime p || ( K - 1 ) ) | 
						
							| 23 | 5 | anim1ci |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( G RegUSGraph K /\ V e. Fin ) ) | 
						
							| 24 | 1 | finrusgrfusgr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G e. FinUSGraph ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> G e. FinUSGraph ) | 
						
							| 27 |  | simp1l |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> p e. Prime ) | 
						
							| 28 |  | numclwwlk8 |  |-  ( ( G e. FinUSGraph /\ p e. Prime ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 ) | 
						
							| 29 | 26 27 28 | syl2anc |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 ) | 
						
							| 30 | 3 | 3ad2ant3 |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 31 |  | pm3.22 |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 32 | 31 | 3adant1 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 34 | 33 | 3ad2ant3 |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 35 |  | simp1 |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( p e. Prime /\ p || ( K - 1 ) ) ) | 
						
							| 36 | 1 | numclwwlk7 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( p e. Prime /\ p || ( K - 1 ) ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 ) | 
						
							| 37 | 30 34 35 36 | syl3anc |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 ) | 
						
							| 38 |  | eqeq1 |  |-  ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 -> ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 <-> 0 = 1 ) ) | 
						
							| 39 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 40 | 39 | nesymi |  |-  -. 0 = 1 | 
						
							| 41 | 40 | pm2.21i |  |-  ( 0 = 1 -> K = 2 ) | 
						
							| 42 | 38 41 | biimtrdi |  |-  ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 -> ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 -> K = 2 ) ) | 
						
							| 43 | 29 37 42 | sylc |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> K = 2 ) | 
						
							| 44 | 43 | a1d |  |-  ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( 1 < K -> K = 2 ) ) | 
						
							| 45 | 44 | 3exp |  |-  ( ( p e. Prime /\ p || ( K - 1 ) ) -> ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) | 
						
							| 46 | 45 | rexlimiva |  |-  ( E. p e. Prime p || ( K - 1 ) -> ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) | 
						
							| 47 | 22 46 | mpcom |  |-  ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) | 
						
							| 48 | 47 | expcom |  |-  ( 2 < K -> ( K e. NN0 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) | 
						
							| 49 | 48 | com23 |  |-  ( 2 < K -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) ) | 
						
							| 50 |  | 1red |  |-  ( K e. NN0 -> 1 e. RR ) | 
						
							| 51 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 52 | 50 51 | ltnled |  |-  ( K e. NN0 -> ( 1 < K <-> -. K <_ 1 ) ) | 
						
							| 53 |  | 1e2m1 |  |-  1 = ( 2 - 1 ) | 
						
							| 54 | 53 | a1i |  |-  ( K e. NN0 -> 1 = ( 2 - 1 ) ) | 
						
							| 55 | 54 | breq2d |  |-  ( K e. NN0 -> ( K <_ 1 <-> K <_ ( 2 - 1 ) ) ) | 
						
							| 56 | 55 | notbid |  |-  ( K e. NN0 -> ( -. K <_ 1 <-> -. K <_ ( 2 - 1 ) ) ) | 
						
							| 57 |  | zltlem1 |  |-  ( ( K e. ZZ /\ 2 e. ZZ ) -> ( K < 2 <-> K <_ ( 2 - 1 ) ) ) | 
						
							| 58 | 12 10 57 | sylancl |  |-  ( K e. NN0 -> ( K < 2 <-> K <_ ( 2 - 1 ) ) ) | 
						
							| 59 | 58 | bicomd |  |-  ( K e. NN0 -> ( K <_ ( 2 - 1 ) <-> K < 2 ) ) | 
						
							| 60 | 59 | notbid |  |-  ( K e. NN0 -> ( -. K <_ ( 2 - 1 ) <-> -. K < 2 ) ) | 
						
							| 61 | 52 56 60 | 3bitrd |  |-  ( K e. NN0 -> ( 1 < K <-> -. K < 2 ) ) | 
						
							| 62 |  | 2re |  |-  2 e. RR | 
						
							| 63 |  | lttri3 |  |-  ( ( K e. RR /\ 2 e. RR ) -> ( K = 2 <-> ( -. K < 2 /\ -. 2 < K ) ) ) | 
						
							| 64 | 63 | biimprd |  |-  ( ( K e. RR /\ 2 e. RR ) -> ( ( -. K < 2 /\ -. 2 < K ) -> K = 2 ) ) | 
						
							| 65 | 51 62 64 | sylancl |  |-  ( K e. NN0 -> ( ( -. K < 2 /\ -. 2 < K ) -> K = 2 ) ) | 
						
							| 66 | 65 | expd |  |-  ( K e. NN0 -> ( -. K < 2 -> ( -. 2 < K -> K = 2 ) ) ) | 
						
							| 67 | 61 66 | sylbid |  |-  ( K e. NN0 -> ( 1 < K -> ( -. 2 < K -> K = 2 ) ) ) | 
						
							| 68 | 67 | com3r |  |-  ( -. 2 < K -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) | 
						
							| 69 | 68 | a1d |  |-  ( -. 2 < K -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) ) | 
						
							| 70 | 49 69 | pm2.61i |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) | 
						
							| 71 | 9 70 | mpd |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) | 
						
							| 72 | 71 | expimpd |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( G RegUSGraph K /\ 1 < K ) -> K = 2 ) ) |