| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk6.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simpll |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G RegUSGraph K ) | 
						
							| 3 |  | simplr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G e. FriendGraph ) | 
						
							| 4 |  | simprr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> V e. Fin ) | 
						
							| 5 | 2 3 4 | 3jca |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) | 
						
							| 6 | 1 | numclwwlk6 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) | 
						
							| 7 | 5 6 | stoic3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) | 
						
							| 8 |  | simp2 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 9 | 8 | ancomd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V e. Fin /\ V =/= (/) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 11 | 10 | ancomd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G e. FriendGraph /\ G RegUSGraph K ) ) | 
						
							| 12 | 1 | frrusgrord |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) | 
						
							| 13 | 9 11 12 | sylc |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` V ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) | 
						
							| 15 | 1 | numclwwlk7lem |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) | 
						
							| 16 |  | nn0cn |  |-  ( K e. NN0 -> K e. CC ) | 
						
							| 17 |  | peano2cnm |  |-  ( K e. CC -> ( K - 1 ) e. CC ) | 
						
							| 18 | 16 17 | syl |  |-  ( K e. NN0 -> ( K - 1 ) e. CC ) | 
						
							| 19 | 16 18 | mulcomd |  |-  ( K e. NN0 -> ( K x. ( K - 1 ) ) = ( ( K - 1 ) x. K ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( K e. NN0 -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) ) | 
						
							| 22 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 23 | 22 | ad2antrl |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) | 
						
							| 24 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 25 |  | peano2zm |  |-  ( K e. ZZ -> ( K - 1 ) e. ZZ ) | 
						
							| 26 | 24 25 | syl |  |-  ( K e. NN0 -> ( K - 1 ) e. ZZ ) | 
						
							| 27 | 26 | adantr |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) | 
						
							| 28 | 24 | adantr |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> K e. ZZ ) | 
						
							| 29 | 23 27 28 | 3jca |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) ) | 
						
							| 30 |  | simprr |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P || ( K - 1 ) ) | 
						
							| 31 |  | mulmoddvds |  |-  ( ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) -> ( P || ( K - 1 ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 ) ) | 
						
							| 32 | 29 30 31 | sylc |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 ) | 
						
							| 33 | 21 32 | eqtrd |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = 0 ) | 
						
							| 34 | 22 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 35 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 36 | 34 35 | jca |  |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) ) | 
						
							| 37 | 36 | ad2antrl |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. RR /\ 1 < P ) ) | 
						
							| 38 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 ) | 
						
							| 40 | 33 39 | oveq12d |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) = ( 0 + 1 ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( 0 + 1 ) mod P ) ) | 
						
							| 42 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 43 |  | peano2rem |  |-  ( K e. RR -> ( K - 1 ) e. RR ) | 
						
							| 44 | 42 43 | syl |  |-  ( K e. NN0 -> ( K - 1 ) e. RR ) | 
						
							| 45 | 42 44 | remulcld |  |-  ( K e. NN0 -> ( K x. ( K - 1 ) ) e. RR ) | 
						
							| 46 | 45 | adantr |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K x. ( K - 1 ) ) e. RR ) | 
						
							| 47 |  | 1red |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> 1 e. RR ) | 
						
							| 48 | 22 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 49 | 48 | ad2antrl |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. RR+ ) | 
						
							| 50 |  | modaddabs |  |-  ( ( ( K x. ( K - 1 ) ) e. RR /\ 1 e. RR /\ P e. RR+ ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) | 
						
							| 51 | 46 47 49 50 | syl3anc |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) | 
						
							| 52 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 53 | 52 | oveq1i |  |-  ( ( 0 + 1 ) mod P ) = ( 1 mod P ) | 
						
							| 54 | 34 35 38 | syl2anc |  |-  ( P e. Prime -> ( 1 mod P ) = 1 ) | 
						
							| 55 | 54 | ad2antrl |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 ) | 
						
							| 56 | 53 55 | eqtrid |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) | 
						
							| 57 | 41 51 56 | 3eqtr3d |  |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 ) | 
						
							| 58 | 15 57 | stoic3 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 ) | 
						
							| 59 | 7 14 58 | 3eqtrd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = 1 ) |