| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk6.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | finrusgrfusgr |  |-  ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 3 | 2 | 3adant2 |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) | 
						
							| 4 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 5 | 4 | adantr |  |-  ( ( P e. Prime /\ P || ( K - 1 ) ) -> P e. NN ) | 
						
							| 6 | 1 | numclwwlk4 |  |-  ( ( G e. FinUSGraph /\ P e. NN ) -> ( # ` ( P ClWWalksN G ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) ) | 
						
							| 7 | 3 5 6 | syl2an |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( P ClWWalksN G ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) ) | 
						
							| 9 | 5 | adantl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) | 
						
							| 10 |  | simp3 |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> V e. Fin ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> V e. Fin ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> V e. Fin ) | 
						
							| 13 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( x ( ClWWalksNOn ` G ) P ) e. Fin ) | 
						
							| 14 |  | hashcl |  |-  ( ( x ( ClWWalksNOn ` G ) P ) e. Fin -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. NN0 ) | 
						
							| 15 | 12 13 14 | 3syl |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. NN0 ) | 
						
							| 16 | 15 | nn0zd |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. ZZ ) | 
						
							| 17 | 16 | ralrimiva |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> A. x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. ZZ ) | 
						
							| 18 | 9 11 17 | modfsummod |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = ( sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) mod P ) ) | 
						
							| 19 |  | simpl |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. Prime /\ P || ( K - 1 ) ) ) | 
						
							| 21 | 20 | anim1ci |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( x e. V /\ ( P e. Prime /\ P || ( K - 1 ) ) ) ) | 
						
							| 22 |  | 3anass |  |-  ( ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) <-> ( x e. V /\ ( P e. Prime /\ P || ( K - 1 ) ) ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) | 
						
							| 24 | 1 | numclwwlk5 |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) | 
						
							| 25 | 19 23 24 | syl2an2r |  |-  ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) | 
						
							| 26 | 25 | sumeq2dv |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = sum_ x e. V 1 ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) mod P ) = ( sum_ x e. V 1 mod P ) ) | 
						
							| 28 | 18 27 | eqtrd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = ( sum_ x e. V 1 mod P ) ) | 
						
							| 29 |  | 1cnd |  |-  ( ( P e. Prime /\ P || ( K - 1 ) ) -> 1 e. CC ) | 
						
							| 30 |  | fsumconst |  |-  ( ( V e. Fin /\ 1 e. CC ) -> sum_ x e. V 1 = ( ( # ` V ) x. 1 ) ) | 
						
							| 31 | 10 29 30 | syl2an |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V 1 = ( ( # ` V ) x. 1 ) ) | 
						
							| 32 |  | hashcl |  |-  ( V e. Fin -> ( # ` V ) e. NN0 ) | 
						
							| 33 | 32 | nn0red |  |-  ( V e. Fin -> ( # ` V ) e. RR ) | 
						
							| 34 |  | ax-1rid |  |-  ( ( # ` V ) e. RR -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( V e. Fin -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) | 
						
							| 36 | 35 | 3ad2ant3 |  |-  ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) | 
						
							| 38 | 31 37 | eqtrd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V 1 = ( # ` V ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V 1 mod P ) = ( ( # ` V ) mod P ) ) | 
						
							| 40 | 8 28 39 | 3eqtrd |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) |