| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | fusgrusgr |  |-  ( G e. FinUSGraph -> G e. USGraph ) | 
						
							| 3 | 2 | adantr |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> G e. USGraph ) | 
						
							| 4 | 1 | clwwlknun |  |-  ( G e. USGraph -> ( N ClWWalksN G ) = U_ x e. V ( x ( ClWWalksNOn ` G ) N ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> ( N ClWWalksN G ) = U_ x e. V ( x ( ClWWalksNOn ` G ) N ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> ( # ` ( N ClWWalksN G ) ) = ( # ` U_ x e. V ( x ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 7 | 1 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> V e. Fin ) | 
						
							| 8 | 7 | adantr |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> V e. Fin ) | 
						
							| 9 | 1 | clwwlknonfin |  |-  ( V e. Fin -> ( x ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 10 | 7 9 | syl |  |-  ( G e. FinUSGraph -> ( x ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 11 | 10 | adantr |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> ( x ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( G e. FinUSGraph /\ N e. NN ) /\ x e. V ) -> ( x ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 13 |  | clwwlknondisj |  |-  Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) | 
						
							| 14 | 13 | a1i |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) ) | 
						
							| 15 | 8 12 14 | hashiun |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> ( # ` U_ x e. V ( x ( ClWWalksNOn ` G ) N ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 16 | 6 15 | eqtrd |  |-  ( ( G e. FinUSGraph /\ N e. NN ) -> ( # ` ( N ClWWalksN G ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) N ) ) ) |