| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | fusgrusgr | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝐺  ∈  USGraph ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  𝐺  ∈  USGraph ) | 
						
							| 4 | 1 | clwwlknun | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ClWWalksN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ClWWalksN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  ( ♯ ‘ ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 7 | 1 | fusgrvtxfi | ⊢ ( 𝐺  ∈  FinUSGraph  →  𝑉  ∈  Fin ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  𝑉  ∈  Fin ) | 
						
							| 9 | 1 | clwwlknonfin | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝐺  ∈  FinUSGraph  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) | 
						
							| 13 |  | clwwlknondisj | ⊢ Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 15 | 8 12 14 | hashiun | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  Σ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 16 | 6 15 | eqtrd | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝑁  ∈  ℕ )  →  ( ♯ ‘ ( 𝑁  ClWWalksN  𝐺 ) )  =  Σ 𝑥  ∈  𝑉 ( ♯ ‘ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) |