Metamath Proof Explorer


Theorem clwwlknondisj

Description: The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 28-May-2021) (Revised by AV, 3-Mar-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Assertion clwwlknondisj Disj 𝑥𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )

Proof

Step Hyp Ref Expression
1 clwwlknon ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 }
2 clwwlknon ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 }
3 1 2 ineq12i ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } )
4 inrab ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) }
5 eqtr2 ( ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) → 𝑥 = 𝑦 )
6 5 con3i ( ¬ 𝑥 = 𝑦 → ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) )
7 6 ralrimivw ( ¬ 𝑥 = 𝑦 → ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) )
8 rabeq0 ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) )
9 7 8 sylibr ( ¬ 𝑥 = 𝑦 → { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) } = ∅ )
10 4 9 eqtrid ( ¬ 𝑥 = 𝑦 → ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } ) = ∅ )
11 3 10 eqtrid ( ¬ 𝑥 = 𝑦 → ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ )
12 11 orri ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ )
13 12 rgen2w 𝑥𝑉𝑦𝑉 ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ )
14 oveq1 ( 𝑥 = 𝑦 → ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )
15 14 disjor ( Disj 𝑥𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ∀ 𝑥𝑉𝑦𝑉 ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ ) )
16 13 15 mpbir Disj 𝑥𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )