| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon | ⊢ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑥 } | 
						
							| 2 |  | clwwlknon | ⊢ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑦 } | 
						
							| 3 | 1 2 | ineq12i | ⊢ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∩  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  ( { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑥 }  ∩  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑦 } ) | 
						
							| 4 |  | inrab | ⊢ ( { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑥 }  ∩  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑦 } )  =  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) } | 
						
							| 5 |  | eqtr2 | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 6 | 5 | con3i | ⊢ ( ¬  𝑥  =  𝑦  →  ¬  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) ) | 
						
							| 7 | 6 | ralrimivw | ⊢ ( ¬  𝑥  =  𝑦  →  ∀ 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ¬  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) ) | 
						
							| 8 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) }  =  ∅  ↔  ∀ 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 ) ¬  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ¬  𝑥  =  𝑦  →  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑥  ∧  ( 𝑤 ‘ 0 )  =  𝑦 ) }  =  ∅ ) | 
						
							| 10 | 4 9 | eqtrid | ⊢ ( ¬  𝑥  =  𝑦  →  ( { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑥 }  ∩  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑦 } )  =  ∅ ) | 
						
							| 11 | 3 10 | eqtrid | ⊢ ( ¬  𝑥  =  𝑦  →  ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∩  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  ∅ ) | 
						
							| 12 | 11 | orri | ⊢ ( 𝑥  =  𝑦  ∨  ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∩  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  ∅ ) | 
						
							| 13 | 12 | rgen2w | ⊢ ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥  =  𝑦  ∨  ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∩  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  ∅ ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 15 | 14 | disjor | ⊢ ( Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  𝑉 ( 𝑥  =  𝑦  ∨  ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∩  ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  =  ∅ ) ) | 
						
							| 16 | 13 15 | mpbir | ⊢ Disj  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) |