Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon |
⊢ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } |
2 |
|
clwwlknon |
⊢ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } |
3 |
1 2
|
ineq12i |
⊢ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } ) |
4 |
|
inrab |
⊢ ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) } |
5 |
|
eqtr2 |
⊢ ( ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) → 𝑥 = 𝑦 ) |
6 |
5
|
con3i |
⊢ ( ¬ 𝑥 = 𝑦 → ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) ) |
7 |
6
|
ralrimivw |
⊢ ( ¬ 𝑥 = 𝑦 → ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) ) |
8 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ¬ 𝑥 = 𝑦 → { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑥 ∧ ( 𝑤 ‘ 0 ) = 𝑦 ) } = ∅ ) |
10 |
4 9
|
eqtrid |
⊢ ( ¬ 𝑥 = 𝑦 → ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑥 } ∩ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑦 } ) = ∅ ) |
11 |
3 10
|
eqtrid |
⊢ ( ¬ 𝑥 = 𝑦 → ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ ) |
12 |
11
|
orri |
⊢ ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ ) |
13 |
12
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |
15 |
14
|
disjor |
⊢ ( Disj 𝑥 ∈ 𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( 𝑥 = 𝑦 ∨ ( ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∩ ( 𝑦 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) = ∅ ) ) |
16 |
13 15
|
mpbir |
⊢ Disj 𝑥 ∈ 𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) |