Metamath Proof Explorer


Theorem clwwlknondisj

Description: The sets of closed walks on different vertices are disjunct. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 28-May-2021) (Revised by AV, 3-Mar-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Assertion clwwlknondisj DisjxVxClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 clwwlknon xClWWalksNOnGN=wNClWWalksNG|w0=x
2 clwwlknon yClWWalksNOnGN=wNClWWalksNG|w0=y
3 1 2 ineq12i xClWWalksNOnGNyClWWalksNOnGN=wNClWWalksNG|w0=xwNClWWalksNG|w0=y
4 inrab wNClWWalksNG|w0=xwNClWWalksNG|w0=y=wNClWWalksNG|w0=xw0=y
5 eqtr2 w0=xw0=yx=y
6 5 con3i ¬x=y¬w0=xw0=y
7 6 ralrimivw ¬x=ywNClWWalksNG¬w0=xw0=y
8 rabeq0 wNClWWalksNG|w0=xw0=y=wNClWWalksNG¬w0=xw0=y
9 7 8 sylibr ¬x=ywNClWWalksNG|w0=xw0=y=
10 4 9 eqtrid ¬x=ywNClWWalksNG|w0=xwNClWWalksNG|w0=y=
11 3 10 eqtrid ¬x=yxClWWalksNOnGNyClWWalksNOnGN=
12 11 orri x=yxClWWalksNOnGNyClWWalksNOnGN=
13 12 rgen2w xVyVx=yxClWWalksNOnGNyClWWalksNOnGN=
14 oveq1 x=yxClWWalksNOnGN=yClWWalksNOnGN
15 14 disjor DisjxVxClWWalksNOnGNxVyVx=yxClWWalksNOnGNyClWWalksNOnGN=
16 13 15 mpbir DisjxVxClWWalksNOnGN