| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon |  |-  ( x ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } | 
						
							| 2 |  | clwwlknon |  |-  ( y ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } | 
						
							| 3 | 1 2 | ineq12i |  |-  ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) | 
						
							| 4 |  | inrab |  |-  ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } | 
						
							| 5 |  | eqtr2 |  |-  ( ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) -> x = y ) | 
						
							| 6 | 5 | con3i |  |-  ( -. x = y -> -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) | 
						
							| 7 | 6 | ralrimivw |  |-  ( -. x = y -> A. w e. ( N ClWWalksN G ) -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) | 
						
							| 8 |  | rabeq0 |  |-  ( { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } = (/) <-> A. w e. ( N ClWWalksN G ) -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( -. x = y -> { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } = (/) ) | 
						
							| 10 | 4 9 | eqtrid |  |-  ( -. x = y -> ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) = (/) ) | 
						
							| 11 | 3 10 | eqtrid |  |-  ( -. x = y -> ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) | 
						
							| 12 | 11 | orri |  |-  ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) | 
						
							| 13 | 12 | rgen2w |  |-  A. x e. V A. y e. V ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) | 
						
							| 14 |  | oveq1 |  |-  ( x = y -> ( x ( ClWWalksNOn ` G ) N ) = ( y ( ClWWalksNOn ` G ) N ) ) | 
						
							| 15 | 14 | disjor |  |-  ( Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) <-> A. x e. V A. y e. V ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) ) | 
						
							| 16 | 13 15 | mpbir |  |-  Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) |