Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon |
|- ( x ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } |
2 |
|
clwwlknon |
|- ( y ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } |
3 |
1 2
|
ineq12i |
|- ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) |
4 |
|
inrab |
|- ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } |
5 |
|
eqtr2 |
|- ( ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) -> x = y ) |
6 |
5
|
con3i |
|- ( -. x = y -> -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) |
7 |
6
|
ralrimivw |
|- ( -. x = y -> A. w e. ( N ClWWalksN G ) -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) |
8 |
|
rabeq0 |
|- ( { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } = (/) <-> A. w e. ( N ClWWalksN G ) -. ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) ) |
9 |
7 8
|
sylibr |
|- ( -. x = y -> { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = x /\ ( w ` 0 ) = y ) } = (/) ) |
10 |
4 9
|
eqtrid |
|- ( -. x = y -> ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = x } i^i { w e. ( N ClWWalksN G ) | ( w ` 0 ) = y } ) = (/) ) |
11 |
3 10
|
eqtrid |
|- ( -. x = y -> ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) |
12 |
11
|
orri |
|- ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) |
13 |
12
|
rgen2w |
|- A. x e. V A. y e. V ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) |
14 |
|
oveq1 |
|- ( x = y -> ( x ( ClWWalksNOn ` G ) N ) = ( y ( ClWWalksNOn ` G ) N ) ) |
15 |
14
|
disjor |
|- ( Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) <-> A. x e. V A. y e. V ( x = y \/ ( ( x ( ClWWalksNOn ` G ) N ) i^i ( y ( ClWWalksNOn ` G ) N ) ) = (/) ) ) |
16 |
13 15
|
mpbir |
|- Disj_ x e. V ( x ( ClWWalksNOn ` G ) N ) |