Metamath Proof Explorer


Theorem numclwwlk4

Description: The total number of closed walks in a finite simple graph is the sum of the numbers of closed walks starting at each of its vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 2-Jun-2021) (Revised by AV, 7-Mar-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Hypothesis numclwwlk3.v V = Vtx G
Assertion numclwwlk4 G FinUSGraph N N ClWWalksN G = x V x ClWWalksNOn G N

Proof

Step Hyp Ref Expression
1 numclwwlk3.v V = Vtx G
2 fusgrusgr G FinUSGraph G USGraph
3 2 adantr G FinUSGraph N G USGraph
4 1 clwwlknun G USGraph N ClWWalksN G = x V x ClWWalksNOn G N
5 3 4 syl G FinUSGraph N N ClWWalksN G = x V x ClWWalksNOn G N
6 5 fveq2d G FinUSGraph N N ClWWalksN G = x V x ClWWalksNOn G N
7 1 fusgrvtxfi G FinUSGraph V Fin
8 7 adantr G FinUSGraph N V Fin
9 1 clwwlknonfin V Fin x ClWWalksNOn G N Fin
10 7 9 syl G FinUSGraph x ClWWalksNOn G N Fin
11 10 adantr G FinUSGraph N x ClWWalksNOn G N Fin
12 11 adantr G FinUSGraph N x V x ClWWalksNOn G N Fin
13 clwwlknondisj Disj x V x ClWWalksNOn G N
14 13 a1i G FinUSGraph N Disj x V x ClWWalksNOn G N
15 8 12 14 hashiun G FinUSGraph N x V x ClWWalksNOn G N = x V x ClWWalksNOn G N
16 6 15 eqtrd G FinUSGraph N N ClWWalksN G = x V x ClWWalksNOn G N