| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk6.v |  | 
						
							| 2 | 1 | finrusgrfusgr |  | 
						
							| 3 | 2 | 3adant2 |  | 
						
							| 4 |  | prmnn |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 | 1 | numclwwlk4 |  | 
						
							| 7 | 3 5 6 | syl2an |  | 
						
							| 8 | 7 | oveq1d |  | 
						
							| 9 | 5 | adantl |  | 
						
							| 10 |  | simp3 |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 1 | clwwlknonfin |  | 
						
							| 14 |  | hashcl |  | 
						
							| 15 | 12 13 14 | 3syl |  | 
						
							| 16 | 15 | nn0zd |  | 
						
							| 17 | 16 | ralrimiva |  | 
						
							| 18 | 9 11 17 | modfsummod |  | 
						
							| 19 |  | simpl |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 | anim1ci |  | 
						
							| 22 |  | 3anass |  | 
						
							| 23 | 21 22 | sylibr |  | 
						
							| 24 | 1 | numclwwlk5 |  | 
						
							| 25 | 19 23 24 | syl2an2r |  | 
						
							| 26 | 25 | sumeq2dv |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 18 27 | eqtrd |  | 
						
							| 29 |  | 1cnd |  | 
						
							| 30 |  | fsumconst |  | 
						
							| 31 | 10 29 30 | syl2an |  | 
						
							| 32 |  | hashcl |  | 
						
							| 33 | 32 | nn0red |  | 
						
							| 34 |  | ax-1rid |  | 
						
							| 35 | 33 34 | syl |  | 
						
							| 36 | 35 | 3ad2ant3 |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 31 37 | eqtrd |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 | 8 28 39 | 3eqtrd |  |