| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modfsummod.n |
|
| 2 |
|
modfsummod.1 |
|
| 3 |
|
modfsummod.2 |
|
| 4 |
|
raleq |
|
| 5 |
4
|
anbi1d |
|
| 6 |
|
sumeq1 |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
sumeq1 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
7 9
|
eqeq12d |
|
| 11 |
5 10
|
imbi12d |
|
| 12 |
|
raleq |
|
| 13 |
12
|
anbi1d |
|
| 14 |
|
sumeq1 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
sumeq1 |
|
| 17 |
16
|
oveq1d |
|
| 18 |
15 17
|
eqeq12d |
|
| 19 |
13 18
|
imbi12d |
|
| 20 |
|
raleq |
|
| 21 |
20
|
anbi1d |
|
| 22 |
|
sumeq1 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
sumeq1 |
|
| 25 |
24
|
oveq1d |
|
| 26 |
23 25
|
eqeq12d |
|
| 27 |
21 26
|
imbi12d |
|
| 28 |
|
raleq |
|
| 29 |
28
|
anbi1d |
|
| 30 |
|
sumeq1 |
|
| 31 |
30
|
oveq1d |
|
| 32 |
|
sumeq1 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
31 33
|
eqeq12d |
|
| 35 |
29 34
|
imbi12d |
|
| 36 |
|
sum0 |
|
| 37 |
36
|
oveq1i |
|
| 38 |
|
sum0 |
|
| 39 |
38
|
a1i |
|
| 40 |
39
|
oveq1d |
|
| 41 |
37 40
|
eqtr4id |
|
| 42 |
41
|
adantl |
|
| 43 |
|
simpll |
|
| 44 |
|
simplrr |
|
| 45 |
|
ralun |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
ad2antrl |
|
| 48 |
47
|
imp |
|
| 49 |
|
modfsummods |
|
| 50 |
43 44 48 49
|
syl3anc |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
com23 |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
a2d |
|
| 55 |
|
ralunb |
|
| 56 |
55
|
anbi1i |
|
| 57 |
56
|
imbi1i |
|
| 58 |
|
an32 |
|
| 59 |
58
|
imbi1i |
|
| 60 |
|
impexp |
|
| 61 |
57 59 60
|
3bitri |
|
| 62 |
54 61
|
imbitrrdi |
|
| 63 |
11 19 27 35 42 62
|
findcard2 |
|
| 64 |
2 63
|
syl |
|
| 65 |
3 1 64
|
mp2and |
|