| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3.v |  | 
						
							| 2 |  | simpl1 |  | 
						
							| 3 |  | simpr1 |  | 
						
							| 4 | 1 | finrusgrfusgr |  | 
						
							| 5 | 4 | 3adant2 |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | simpr1 |  | 
						
							| 8 |  | ne0i |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 1 | frusgrnn0 |  | 
						
							| 11 | 6 7 9 10 | syl3anc |  | 
						
							| 12 | 11 | ex |  | 
						
							| 13 | 12 | 3ad2ant1 |  | 
						
							| 14 | 13 | impcom |  | 
						
							| 15 | 2 3 14 | 3jca |  | 
						
							| 16 |  | simpr3 |  | 
						
							| 17 | 1 | numclwwlk5lem |  | 
						
							| 18 | 15 16 17 | sylc |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | eleq1 |  | 
						
							| 21 |  | breq1 |  | 
						
							| 22 | 20 21 | 3anbi23d |  | 
						
							| 23 | 22 | anbi2d |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 |  | id |  | 
						
							| 27 | 25 26 | oveq12d |  | 
						
							| 28 | 27 | eqeq1d |  | 
						
							| 29 | 19 23 28 | 3imtr4d |  | 
						
							| 30 |  | 3simpa |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | simprl3 |  | 
						
							| 34 |  | simprr1 |  | 
						
							| 35 |  | eldifsn |  | 
						
							| 36 |  | oddprmge3 |  | 
						
							| 37 | 35 36 | sylbir |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 38 | 3ad2ant2 |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 40 | impcom |  | 
						
							| 42 | 1 | numclwwlk3 |  | 
						
							| 43 | 32 33 34 41 42 | syl13anc |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 12 | 3ad2ant1 |  | 
						
							| 46 | 45 | impcom |  | 
						
							| 47 | 46 | nn0zd |  | 
						
							| 48 |  | peano2zm |  | 
						
							| 49 |  | zre |  | 
						
							| 50 | 47 48 49 | 3syl |  | 
						
							| 51 |  | simpl3 |  | 
						
							| 52 | 1 | clwwlknonfin |  | 
						
							| 53 |  | hashcl |  | 
						
							| 54 | 51 52 53 | 3syl |  | 
						
							| 55 | 54 | nn0red |  | 
						
							| 56 | 50 55 | remulcld |  | 
						
							| 57 | 46 | nn0red |  | 
						
							| 58 |  | prmm2nn0 |  | 
						
							| 59 | 58 | 3ad2ant2 |  | 
						
							| 60 | 59 | adantl |  | 
						
							| 61 | 57 60 | reexpcld |  | 
						
							| 62 |  | prmnn |  | 
						
							| 63 | 62 | nnrpd |  | 
						
							| 64 | 63 | 3ad2ant2 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 | 56 61 65 | 3jca |  | 
						
							| 67 | 66 | adantl |  | 
						
							| 68 |  | modaddabs |  | 
						
							| 69 | 68 | eqcomd |  | 
						
							| 70 | 67 69 | syl |  | 
						
							| 71 | 62 | 3ad2ant2 |  | 
						
							| 72 | 71 | adantl |  | 
						
							| 73 |  | nn0z |  | 
						
							| 74 | 46 73 48 | 3syl |  | 
						
							| 75 | 54 | nn0zd |  | 
						
							| 76 | 72 74 75 | 3jca |  | 
						
							| 77 |  | simpr3 |  | 
						
							| 78 |  | mulmoddvds |  | 
						
							| 79 | 76 77 78 | sylc |  | 
						
							| 80 |  | simpr2 |  | 
						
							| 81 | 80 47 | jca |  | 
						
							| 82 |  | powm2modprm |  | 
						
							| 83 | 81 77 82 | sylc |  | 
						
							| 84 | 79 83 | oveq12d |  | 
						
							| 85 | 84 | oveq1d |  | 
						
							| 86 |  | 0p1e1 |  | 
						
							| 87 | 86 | oveq1i |  | 
						
							| 88 | 62 | nnred |  | 
						
							| 89 |  | prmgt1 |  | 
						
							| 90 |  | 1mod |  | 
						
							| 91 | 88 89 90 | syl2anc |  | 
						
							| 92 | 87 91 | eqtrid |  | 
						
							| 93 | 92 | 3ad2ant2 |  | 
						
							| 94 | 93 | adantl |  | 
						
							| 95 | 85 94 | eqtrd |  | 
						
							| 96 | 95 | adantl |  | 
						
							| 97 | 44 70 96 | 3eqtrd |  | 
						
							| 98 | 97 | ex |  | 
						
							| 99 | 29 98 | pm2.61ine |  |