| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | ancom |  |-  ( ( V e. Fin /\ V =/= (/) ) <-> ( V =/= (/) /\ V e. Fin ) ) | 
						
							| 3 |  | ancom |  |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) <-> ( G RegUSGraph K /\ G e. FriendGraph ) ) | 
						
							| 4 | 2 3 | anbi12i |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) <-> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) ) | 
						
							| 5 | 4 | biimpi |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) ) | 
						
							| 6 | 5 | ancomd |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) ) | 
						
							| 7 | 1 | numclwwlk7lem |  |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K e. NN0 ) | 
						
							| 9 |  | neanior |  |-  ( ( K =/= 0 /\ K =/= 2 ) <-> -. ( K = 0 \/ K = 2 ) ) | 
						
							| 10 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 11 |  | 1re |  |-  1 e. RR | 
						
							| 12 |  | lenlt |  |-  ( ( K e. RR /\ 1 e. RR ) -> ( K <_ 1 <-> -. 1 < K ) ) | 
						
							| 13 | 10 11 12 | sylancl |  |-  ( K e. NN0 -> ( K <_ 1 <-> -. 1 < K ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 <-> -. 1 < K ) ) | 
						
							| 15 |  | elnnne0 |  |-  ( K e. NN <-> ( K e. NN0 /\ K =/= 0 ) ) | 
						
							| 16 |  | nnle1eq1 |  |-  ( K e. NN -> ( K <_ 1 <-> K = 1 ) ) | 
						
							| 17 | 16 | biimpd |  |-  ( K e. NN -> ( K <_ 1 -> K = 1 ) ) | 
						
							| 18 | 15 17 | sylbir |  |-  ( ( K e. NN0 /\ K =/= 0 ) -> ( K <_ 1 -> K = 1 ) ) | 
						
							| 19 | 18 | a1d |  |-  ( ( K e. NN0 /\ K =/= 0 ) -> ( K =/= 2 -> ( K <_ 1 -> K = 1 ) ) ) | 
						
							| 20 | 19 | expimpd |  |-  ( K e. NN0 -> ( ( K =/= 0 /\ K =/= 2 ) -> ( K <_ 1 -> K = 1 ) ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 -> K = 1 ) ) | 
						
							| 22 | 14 21 | sylbird |  |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> K = 1 ) ) | 
						
							| 23 | 1 | fveq2i |  |-  ( # ` V ) = ( # ` ( Vtx ` G ) ) | 
						
							| 24 | 23 | eqeq1i |  |-  ( ( # ` V ) = 1 <-> ( # ` ( Vtx ` G ) ) = 1 ) | 
						
							| 25 | 24 | biimpi |  |-  ( ( # ` V ) = 1 -> ( # ` ( Vtx ` G ) ) = 1 ) | 
						
							| 26 |  | simpr |  |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) -> G RegUSGraph K ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G RegUSGraph K ) | 
						
							| 28 |  | rusgr1vtx |  |-  ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> K = 0 ) | 
						
							| 29 | 25 27 28 | syl2an |  |-  ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> K = 0 ) | 
						
							| 30 | 29 | orcd |  |-  ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> ( K = 0 \/ K = 2 ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( # ` V ) = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 32 | 31 | a1d |  |-  ( ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 33 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 34 | 1 33 | rusgrprop0 |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 35 |  | simp2 |  |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> G e. FriendGraph ) | 
						
							| 36 |  | hashnncl |  |-  ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) ) | 
						
							| 37 |  | df-ne |  |-  ( ( # ` V ) =/= 1 <-> -. ( # ` V ) = 1 ) | 
						
							| 38 |  | nngt1ne1 |  |-  ( ( # ` V ) e. NN -> ( 1 < ( # ` V ) <-> ( # ` V ) =/= 1 ) ) | 
						
							| 39 | 38 | biimprd |  |-  ( ( # ` V ) e. NN -> ( ( # ` V ) =/= 1 -> 1 < ( # ` V ) ) ) | 
						
							| 40 | 37 39 | biimtrrid |  |-  ( ( # ` V ) e. NN -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) | 
						
							| 41 | 36 40 | biimtrrdi |  |-  ( V e. Fin -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) | 
						
							| 43 | 42 | impcom |  |-  ( ( -. ( # ` V ) = 1 /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < ( # ` V ) ) | 
						
							| 44 | 1 | vdgn1frgrv3 |  |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 ) | 
						
							| 45 | 35 43 44 | 3imp3i2an |  |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 ) | 
						
							| 46 |  | r19.26 |  |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) <-> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 47 |  | r19.2z |  |-  ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) | 
						
							| 48 |  | neeq1 |  |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 <-> K =/= 1 ) ) | 
						
							| 49 | 48 | biimpd |  |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 -> K =/= 1 ) ) | 
						
							| 50 | 49 | impcom |  |-  ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> K =/= 1 ) | 
						
							| 51 |  | eqneqall |  |-  ( K = 1 -> ( K =/= 1 -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( K =/= 1 -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 53 | 50 52 | syl |  |-  ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 54 | 53 | rexlimivw |  |-  ( E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 55 | 47 54 | syl |  |-  ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 56 | 55 | ex |  |-  ( V =/= (/) -> ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 57 | 46 56 | biimtrrid |  |-  ( V =/= (/) -> ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 58 | 57 | expd |  |-  ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 59 | 58 | com34 |  |-  ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 60 | 59 | adantl |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 61 | 60 | 3ad2ant3 |  |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 62 | 45 61 | mpd |  |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 63 | 62 | 3exp |  |-  ( -. ( # ` V ) = 1 -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) ) | 
						
							| 64 | 63 | com15 |  |-  ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) | 
						
							| 65 | 64 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) | 
						
							| 66 | 34 65 | syl |  |-  ( G RegUSGraph K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) | 
						
							| 67 | 66 | impcom |  |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 68 | 67 | impcom |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 69 | 68 | com13 |  |-  ( -. ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 70 | 32 69 | pm2.61i |  |-  ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 71 | 22 70 | syl6 |  |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( K =/= 0 /\ K =/= 2 ) -> ( K e. NN0 -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 73 | 72 | com23 |  |-  ( ( K =/= 0 /\ K =/= 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 74 | 9 73 | sylbir |  |-  ( -. ( K = 0 \/ K = 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 75 | 74 | impcom |  |-  ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 76 | 75 | com13 |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K e. NN0 -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 77 | 8 76 | mpd |  |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 78 | 77 | com12 |  |-  ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) | 
						
							| 79 | 78 | exp4b |  |-  ( -. 1 < K -> ( -. ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) ) | 
						
							| 80 |  | simprl |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G e. FriendGraph ) | 
						
							| 81 |  | simpl |  |-  ( ( V e. Fin /\ V =/= (/) ) -> V e. Fin ) | 
						
							| 82 | 81 | ad2antlr |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V e. Fin ) | 
						
							| 83 |  | simpr |  |-  ( ( V e. Fin /\ V =/= (/) ) -> V =/= (/) ) | 
						
							| 84 | 83 | ad2antlr |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V =/= (/) ) | 
						
							| 85 |  | simpl |  |-  ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < K ) | 
						
							| 86 | 85 26 | anim12ci |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( G RegUSGraph K /\ 1 < K ) ) | 
						
							| 87 | 1 | frgrreggt1 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( G RegUSGraph K /\ 1 < K ) -> K = 2 ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ ( G RegUSGraph K /\ 1 < K ) ) -> K = 2 ) | 
						
							| 89 | 80 82 84 86 88 | syl31anc |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K = 2 ) | 
						
							| 90 | 89 | olcd |  |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) | 
						
							| 91 | 90 | exp31 |  |-  ( 1 < K -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 92 |  | 2a1 |  |-  ( ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) | 
						
							| 93 | 79 91 92 | pm2.61ii |  |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) |