Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
ancom |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ↔ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) |
3 |
|
ancom |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ↔ ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ) |
4 |
2 3
|
anbi12i |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ↔ ( ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ∧ ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ) ) |
5 |
4
|
biimpi |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ∧ ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ) ) |
6 |
5
|
ancomd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) ) |
7 |
1
|
numclwwlk7lem |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐾 ∈ ℕ0 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐾 ∈ ℕ0 ) |
9 |
|
neanior |
⊢ ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ↔ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) |
10 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
11 |
|
1re |
⊢ 1 ∈ ℝ |
12 |
|
lenlt |
⊢ ( ( 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) ) |
15 |
|
elnnne0 |
⊢ ( 𝐾 ∈ ℕ ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) ) |
16 |
|
nnle1eq1 |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ≤ 1 ↔ 𝐾 = 1 ) ) |
17 |
16
|
biimpd |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) |
18 |
15 17
|
sylbir |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) |
19 |
18
|
a1d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) → ( 𝐾 ≠ 2 → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) ) |
20 |
19
|
expimpd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) ) |
21 |
20
|
impcom |
⊢ ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) |
22 |
14 21
|
sylbird |
⊢ ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( ¬ 1 < 𝐾 → 𝐾 = 1 ) ) |
23 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝑉 ) = ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) |
24 |
23
|
eqeq1i |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
25 |
24
|
biimpi |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
26 |
|
simpr |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 RegUSGraph 𝐾 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐺 RegUSGraph 𝐾 ) |
28 |
|
rusgr1vtx |
⊢ ( ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐾 = 0 ) |
29 |
25 27 28
|
syl2an |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ) → 𝐾 = 0 ) |
30 |
29
|
orcd |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) |
31 |
30
|
ex |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
32 |
31
|
a1d |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
33 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
34 |
1 33
|
rusgrprop0 |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
35 |
|
simp2 |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 𝐺 ∈ FriendGraph ) |
36 |
|
hashnncl |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ 𝑉 ≠ ∅ ) ) |
37 |
|
df-ne |
⊢ ( ( ♯ ‘ 𝑉 ) ≠ 1 ↔ ¬ ( ♯ ‘ 𝑉 ) = 1 ) |
38 |
|
nngt1ne1 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 1 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≠ 1 ) ) |
39 |
38
|
biimprd |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) ≠ 1 → 1 < ( ♯ ‘ 𝑉 ) ) ) |
40 |
37 39
|
syl5bir |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) ) |
41 |
36 40
|
syl6bir |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) ) ) |
42 |
41
|
imp |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) ) |
43 |
42
|
impcom |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 1 < ( ♯ ‘ 𝑉 ) ) |
44 |
1
|
vdgn1frgrv3 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ) |
45 |
35 43 44
|
3imp3i2an |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ) |
46 |
|
r19.26 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ↔ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
47 |
|
r19.2z |
⊢ ( ( 𝑉 ≠ ∅ ∧ ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) → ∃ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) |
48 |
|
neeq1 |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ↔ 𝐾 ≠ 1 ) ) |
49 |
48
|
biimpd |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → 𝐾 ≠ 1 ) ) |
50 |
49
|
impcom |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐾 ≠ 1 ) |
51 |
|
eqneqall |
⊢ ( 𝐾 = 1 → ( 𝐾 ≠ 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
52 |
51
|
com12 |
⊢ ( 𝐾 ≠ 1 → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
53 |
50 52
|
syl |
⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
54 |
53
|
rexlimivw |
⊢ ( ∃ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
55 |
47 54
|
syl |
⊢ ( ( 𝑉 ≠ ∅ ∧ ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
56 |
55
|
ex |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
57 |
46 56
|
syl5bir |
⊢ ( 𝑉 ≠ ∅ → ( ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
58 |
57
|
expd |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
59 |
58
|
com34 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
61 |
60
|
3ad2ant3 |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
62 |
45 61
|
mpd |
⊢ ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ( 𝐾 = 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
63 |
62
|
3exp |
⊢ ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) ) |
64 |
63
|
com15 |
⊢ ( ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) ) |
65 |
64
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) ) |
66 |
34 65
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) ) |
67 |
66
|
impcom |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
68 |
67
|
impcom |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
69 |
68
|
com13 |
⊢ ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
70 |
32 69
|
pm2.61i |
⊢ ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
71 |
22 70
|
syl6 |
⊢ ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( ¬ 1 < 𝐾 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
72 |
71
|
ex |
⊢ ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( 𝐾 ∈ ℕ0 → ( ¬ 1 < 𝐾 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
73 |
72
|
com23 |
⊢ ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( ¬ 1 < 𝐾 → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
74 |
9 73
|
sylbir |
⊢ ( ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ¬ 1 < 𝐾 → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
75 |
74
|
impcom |
⊢ ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
76 |
75
|
com13 |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 ∈ ℕ0 → ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
77 |
8 76
|
mpd |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
78 |
77
|
com12 |
⊢ ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |
79 |
78
|
exp4b |
⊢ ( ¬ 1 < 𝐾 → ( ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) |
80 |
|
simprl |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐺 ∈ FriendGraph ) |
81 |
|
simpl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝑉 ∈ Fin ) |
82 |
81
|
ad2antlr |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝑉 ∈ Fin ) |
83 |
|
simpr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝑉 ≠ ∅ ) |
84 |
83
|
ad2antlr |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝑉 ≠ ∅ ) |
85 |
|
simpl |
⊢ ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 1 < 𝐾 ) |
86 |
85 26
|
anim12ci |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) ) |
87 |
1
|
frgrreggt1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) → 𝐾 = 2 ) ) |
88 |
87
|
imp |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) ) → 𝐾 = 2 ) |
89 |
80 82 84 86 88
|
syl31anc |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐾 = 2 ) |
90 |
89
|
olcd |
⊢ ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) |
91 |
90
|
exp31 |
⊢ ( 1 < 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
92 |
|
2a1 |
⊢ ( ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) |
93 |
79 91 92
|
pm2.61ii |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) |