Metamath Proof Explorer


Theorem frgrreg

Description: If a finite nonempty friendship graph is K-regular, then K must be 2 (or 0 ). (Contributed by Alexander van der Vekens, 9-Oct-2018) (Revised by AV, 3-Jun-2021)

Ref Expression
Hypothesis frgrreggt1.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion frgrreg ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )

Proof

Step Hyp Ref Expression
1 frgrreggt1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 ancom ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ↔ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) )
3 ancom ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ↔ ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) )
4 2 3 anbi12i ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ↔ ( ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ∧ ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ) )
5 4 biimpi ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ∧ ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ) )
6 5 ancomd ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) )
7 1 numclwwlk7lem ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐾 ∈ ℕ0 )
8 6 7 syl ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐾 ∈ ℕ0 )
9 neanior ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ↔ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) )
10 nn0re ( 𝐾 ∈ ℕ0𝐾 ∈ ℝ )
11 1re 1 ∈ ℝ
12 lenlt ( ( 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) )
13 10 11 12 sylancl ( 𝐾 ∈ ℕ0 → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) )
14 13 adantl ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ≤ 1 ↔ ¬ 1 < 𝐾 ) )
15 elnnne0 ( 𝐾 ∈ ℕ ↔ ( 𝐾 ∈ ℕ0𝐾 ≠ 0 ) )
16 nnle1eq1 ( 𝐾 ∈ ℕ → ( 𝐾 ≤ 1 ↔ 𝐾 = 1 ) )
17 16 biimpd ( 𝐾 ∈ ℕ → ( 𝐾 ≤ 1 → 𝐾 = 1 ) )
18 15 17 sylbir ( ( 𝐾 ∈ ℕ0𝐾 ≠ 0 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) )
19 18 a1d ( ( 𝐾 ∈ ℕ0𝐾 ≠ 0 ) → ( 𝐾 ≠ 2 → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) )
20 19 expimpd ( 𝐾 ∈ ℕ0 → ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) ) )
21 20 impcom ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ≤ 1 → 𝐾 = 1 ) )
22 14 21 sylbird ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( ¬ 1 < 𝐾𝐾 = 1 ) )
23 1 fveq2i ( ♯ ‘ 𝑉 ) = ( ♯ ‘ ( Vtx ‘ 𝐺 ) )
24 23 eqeq1i ( ( ♯ ‘ 𝑉 ) = 1 ↔ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 )
25 24 biimpi ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 )
26 simpr ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 RegUSGraph 𝐾 )
27 26 adantl ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐺 RegUSGraph 𝐾 )
28 rusgr1vtx ( ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐾 = 0 )
29 25 27 28 syl2an ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ) → 𝐾 = 0 )
30 29 orcd ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) )
31 30 ex ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
32 31 a1d ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
33 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
34 1 33 rusgrprop0 ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) )
35 simp2 ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 𝐺 ∈ FriendGraph )
36 hashnncl ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ 𝑉 ≠ ∅ ) )
37 df-ne ( ( ♯ ‘ 𝑉 ) ≠ 1 ↔ ¬ ( ♯ ‘ 𝑉 ) = 1 )
38 nngt1ne1 ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( 1 < ( ♯ ‘ 𝑉 ) ↔ ( ♯ ‘ 𝑉 ) ≠ 1 ) )
39 38 biimprd ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ( ♯ ‘ 𝑉 ) ≠ 1 → 1 < ( ♯ ‘ 𝑉 ) ) )
40 37 39 syl5bir ( ( ♯ ‘ 𝑉 ) ∈ ℕ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) )
41 36 40 syl6bir ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) ) )
42 41 imp ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → 1 < ( ♯ ‘ 𝑉 ) ) )
43 42 impcom ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 1 < ( ♯ ‘ 𝑉 ) )
44 1 vdgn1frgrv3 ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝑉 ) ) → ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 )
45 35 43 44 3imp3i2an ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 )
46 r19.26 ( ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ↔ ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) )
47 r19.2z ( ( 𝑉 ≠ ∅ ∧ ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) → ∃ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) )
48 neeq1 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ↔ 𝐾 ≠ 1 ) )
49 48 biimpd ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → 𝐾 ≠ 1 ) )
50 49 impcom ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → 𝐾 ≠ 1 )
51 eqneqall ( 𝐾 = 1 → ( 𝐾 ≠ 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
52 51 com12 ( 𝐾 ≠ 1 → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
53 50 52 syl ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
54 53 rexlimivw ( ∃ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
55 47 54 syl ( ( 𝑉 ≠ ∅ ∧ ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
56 55 ex ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
57 46 56 syl5bir ( 𝑉 ≠ ∅ → ( ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
58 57 expd ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
59 58 com34 ( 𝑉 ≠ ∅ → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
60 59 adantl ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
61 60 3ad2ant3 ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ≠ 1 → ( 𝐾 = 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
62 45 61 mpd ( ( ¬ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐺 ∈ FriendGraph ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → ( 𝐾 = 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
63 62 3exp ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) )
64 63 com15 ( ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) )
65 64 3ad2ant3 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 𝐾 ) → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) )
66 34 65 syl ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ FriendGraph → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) ) )
67 66 impcom ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
68 67 impcom ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 1 → ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
69 68 com13 ( ¬ ( ♯ ‘ 𝑉 ) = 1 → ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
70 32 69 pm2.61i ( 𝐾 = 1 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
71 22 70 syl6 ( ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) ∧ 𝐾 ∈ ℕ0 ) → ( ¬ 1 < 𝐾 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
72 71 ex ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( 𝐾 ∈ ℕ0 → ( ¬ 1 < 𝐾 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
73 72 com23 ( ( 𝐾 ≠ 0 ∧ 𝐾 ≠ 2 ) → ( ¬ 1 < 𝐾 → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
74 9 73 sylbir ( ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ¬ 1 < 𝐾 → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
75 74 impcom ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 ∈ ℕ0 → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
76 75 com13 ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 ∈ ℕ0 → ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
77 8 76 mpd ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
78 77 com12 ( ( ¬ 1 < 𝐾 ∧ ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) → ( ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )
79 78 exp4b ( ¬ 1 < 𝐾 → ( ¬ ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) ) )
80 simprl ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐺 ∈ FriendGraph )
81 simpl ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝑉 ∈ Fin )
82 81 ad2antlr ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝑉 ∈ Fin )
83 simpr ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → 𝑉 ≠ ∅ )
84 83 ad2antlr ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝑉 ≠ ∅ )
85 simpl ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) → 1 < 𝐾 )
86 85 26 anim12ci ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) )
87 1 frgrreggt1 ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) → 𝐾 = 2 ) )
88 87 imp ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ ( 𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾 ) ) → 𝐾 = 2 )
89 80 82 84 86 88 syl31anc ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → 𝐾 = 2 )
90 89 olcd ( ( ( 1 < 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ) ∧ ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) )
91 90 exp31 ( 1 < 𝐾 → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
92 2a1 ( ( 𝐾 = 0 ∨ 𝐾 = 2 ) → ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) ) )
93 79 91 92 pm2.61ii ( ( 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( 𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐾 = 0 ∨ 𝐾 = 2 ) ) )