| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | ancom | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ↔  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) ) | 
						
							| 3 |  | ancom | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  ↔  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) ) | 
						
							| 4 | 2 3 | anbi12i | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  ↔  ( ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 6 | 5 | ancomd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) ) ) | 
						
							| 7 | 1 | numclwwlk7lem | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 9 |  | neanior | ⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ↔  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) | 
						
							| 10 |  | nn0re | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ ) | 
						
							| 11 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 12 |  | lenlt | ⊢ ( ( 𝐾  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≤  1  ↔  ¬  1  <  𝐾 ) ) | 
						
							| 15 |  | elnnne0 | ⊢ ( 𝐾  ∈  ℕ  ↔  ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 ) ) | 
						
							| 16 |  | nnle1eq1 | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  ≤  1  ↔  𝐾  =  1 ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) | 
						
							| 18 | 15 17 | sylbir | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) | 
						
							| 19 | 18 | a1d | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝐾  ≠  0 )  →  ( 𝐾  ≠  2  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) ) | 
						
							| 20 | 19 | expimpd | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≤  1  →  𝐾  =  1 ) ) | 
						
							| 22 | 14 21 | sylbird | ⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  1  <  𝐾  →  𝐾  =  1 ) ) | 
						
							| 23 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) | 
						
							| 24 | 23 | eqeq1i | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  ↔  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 ) | 
						
							| 25 | 24 | biimpi | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1 ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 28 |  | rusgr1vtx | ⊢ ( ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) )  =  1  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐾  =  0 ) | 
						
							| 29 | 25 27 28 | syl2an | ⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) ) )  →  𝐾  =  0 ) | 
						
							| 30 | 29 | orcd | ⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 32 | 31 | a1d | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 34 | 1 33 | rusgrprop0 | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 35 |  | simp2 | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 36 |  | hashnncl | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  𝑉  ≠  ∅ ) ) | 
						
							| 37 |  | df-ne | ⊢ ( ( ♯ ‘ 𝑉 )  ≠  1  ↔  ¬  ( ♯ ‘ 𝑉 )  =  1 ) | 
						
							| 38 |  | nngt1ne1 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 1  <  ( ♯ ‘ 𝑉 )  ↔  ( ♯ ‘ 𝑉 )  ≠  1 ) ) | 
						
							| 39 | 38 | biimprd | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  ≠  1  →  1  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 40 | 37 39 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 41 | 36 40 | biimtrrdi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  1  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 43 | 42 | impcom | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  1  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 44 | 1 | vdgn1frgrv3 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1 ) | 
						
							| 45 | 35 43 44 | 3imp3i2an | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1 ) | 
						
							| 46 |  | r19.26 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ↔  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 47 |  | r19.2z | ⊢ ( ( 𝑉  ≠  ∅  ∧  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  →  ∃ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 48 |  | neeq1 | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ↔  𝐾  ≠  1 ) ) | 
						
							| 49 | 48 | biimpd | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  𝐾  ≠  1 ) ) | 
						
							| 50 | 49 | impcom | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  𝐾  ≠  1 ) | 
						
							| 51 |  | eqneqall | ⊢ ( 𝐾  =  1  →  ( 𝐾  ≠  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 52 | 51 | com12 | ⊢ ( 𝐾  ≠  1  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 53 | 50 52 | syl | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 54 | 53 | rexlimivw | ⊢ ( ∃ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 55 | 47 54 | syl | ⊢ ( ( 𝑉  ≠  ∅  ∧  ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 57 | 46 56 | biimtrrid | ⊢ ( 𝑉  ≠  ∅  →  ( ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 58 | 57 | expd | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 59 | 58 | com34 | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 61 | 60 | 3ad2ant3 | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  1  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 62 | 45 61 | mpd | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  𝐺  ∈   FriendGraph   ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 63 | 62 | 3exp | ⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) ) | 
						
							| 64 | 63 | com15 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) ) | 
						
							| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) ) | 
						
							| 66 | 34 65 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) ) | 
						
							| 67 | 66 | impcom | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 68 | 67 | impcom | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 69 | 68 | com13 | ⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 70 | 32 69 | pm2.61i | ⊢ ( 𝐾  =  1  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 71 | 22 70 | syl6 | ⊢ ( ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  ∧  𝐾  ∈  ℕ0 )  →  ( ¬  1  <  𝐾  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( 𝐾  ∈  ℕ0  →  ( ¬  1  <  𝐾  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 73 | 72 | com23 | ⊢ ( ( 𝐾  ≠  0  ∧  𝐾  ≠  2 )  →  ( ¬  1  <  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 74 | 9 73 | sylbir | ⊢ ( ¬  ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ¬  1  <  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 75 | 74 | impcom | ⊢ ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  ∈  ℕ0  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 76 | 75 | com13 | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  ∈  ℕ0  →  ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 77 | 8 76 | mpd | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 78 | 77 | com12 | ⊢ ( ( ¬  1  <  𝐾  ∧  ¬  ( 𝐾  =  0  ∨  𝐾  =  2 ) )  →  ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 79 | 78 | exp4b | ⊢ ( ¬  1  <  𝐾  →  ( ¬  ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) ) | 
						
							| 80 |  | simprl | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 81 |  | simpl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝑉  ∈  Fin ) | 
						
							| 82 | 81 | ad2antlr | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝑉  ∈  Fin ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  𝑉  ≠  ∅ ) | 
						
							| 84 | 83 | ad2antlr | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝑉  ≠  ∅ ) | 
						
							| 85 |  | simpl | ⊢ ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  →  1  <  𝐾 ) | 
						
							| 86 | 85 26 | anim12ci | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 ) ) | 
						
							| 87 | 1 | frgrreggt1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 )  →  𝐾  =  2 ) ) | 
						
							| 88 | 87 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  RegUSGraph  𝐾  ∧  1  <  𝐾 ) )  →  𝐾  =  2 ) | 
						
							| 89 | 80 82 84 86 88 | syl31anc | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  𝐾  =  2 ) | 
						
							| 90 | 89 | olcd | ⊢ ( ( ( 1  <  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) | 
						
							| 91 | 90 | exp31 | ⊢ ( 1  <  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 92 |  | 2a1 | ⊢ ( ( 𝐾  =  0  ∨  𝐾  =  2 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) ) | 
						
							| 93 | 79 91 92 | pm2.61ii | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) |