Metamath Proof Explorer


Theorem numclwwlk7lem

Description: Lemma for numclwwlk7 , frgrreggt1 and frgrreg : If a finite, nonempty friendship graph is K-regular, the K is a nonnegative integer. (Contributed by AV, 3-Jun-2021)

Ref Expression
Hypothesis numclwwlk7lem.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion numclwwlk7lem ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐾 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 numclwwlk7lem.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 finrusgrfusgr ( ( 𝐺 RegUSGraph 𝐾𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph )
3 2 ad2ant2rl ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐺 ∈ FinUSGraph )
4 simpll ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐺 RegUSGraph 𝐾 )
5 simprl ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝑉 ≠ ∅ )
6 1 frusgrnn0 ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 )
7 3 4 5 6 syl3anc ( ( ( 𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐾 ∈ ℕ0 )