| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk7lem.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | finrusgrfusgr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 3 | 2 | ad2ant2rl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐺  ∈  FinUSGraph ) | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝑉  ≠  ∅ ) | 
						
							| 6 | 1 | frusgrnn0 | ⊢ ( ( 𝐺  ∈  FinUSGraph  ∧  𝐺  RegUSGraph  𝐾  ∧  𝑉  ≠  ∅ )  →  𝐾  ∈  ℕ0 ) | 
						
							| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝐺  ∈   FriendGraph  )  ∧  ( 𝑉  ≠  ∅  ∧  𝑉  ∈  Fin ) )  →  𝐾  ∈  ℕ0 ) |