Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk7lem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
finrusgrfusgr |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) → 𝐺 ∈ FinUSGraph ) |
3 |
2
|
ad2ant2rl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐺 ∈ FinUSGraph ) |
4 |
|
simpll |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐺 RegUSGraph 𝐾 ) |
5 |
|
simprl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝑉 ≠ ∅ ) |
6 |
1
|
frusgrnn0 |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅ ) → 𝐾 ∈ ℕ0 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝐺 ∈ FriendGraph ) ∧ ( 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin ) ) → 𝐾 ∈ ℕ0 ) |