| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | hashcl | ⊢ ( 𝑉  ∈  Fin  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 3 |  | ax-1 | ⊢ ( ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 4 |  | 3ioran | ⊢ ( ¬  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  ↔  ( ¬  ( ♯ ‘ 𝑉 )  =  0  ∧  ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  ¬  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 5 |  | df-ne | ⊢ ( ( ♯ ‘ 𝑉 )  ≠  0  ↔  ¬  ( ♯ ‘ 𝑉 )  =  0 ) | 
						
							| 6 |  | hasheq0 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 7 | 6 | necon3bid | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ≠  0  ↔  𝑉  ≠  ∅ ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  ≠  0 )  →  𝑉  ≠  ∅ ) | 
						
							| 9 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 10 |  | df-ne | ⊢ ( ( ♯ ‘ 𝑉 )  ≠  1  ↔  ¬  ( ♯ ‘ 𝑉 )  =  1 ) | 
						
							| 11 |  | eluz2b3 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ∧  ( ♯ ‘ 𝑉 )  ≠  1 ) ) | 
						
							| 12 |  | hash2prde | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ∃ 𝑎 ∃ 𝑏 ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } ) ) | 
						
							| 13 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑎  ≠  𝑏  →  𝑎  ∈  V ) | 
						
							| 15 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑎  ≠  𝑏  →  𝑏  ∈  V ) | 
						
							| 17 |  | id | ⊢ ( 𝑎  ≠  𝑏  →  𝑎  ≠  𝑏 ) | 
						
							| 18 | 14 16 17 | 3jca | ⊢ ( 𝑎  ≠  𝑏  →  ( 𝑎  ∈  V  ∧  𝑏  ∈  V  ∧  𝑎  ≠  𝑏 ) ) | 
						
							| 19 | 1 | eqeq1i | ⊢ ( 𝑉  =  { 𝑎 ,  𝑏 }  ↔  ( Vtx ‘ 𝐺 )  =  { 𝑎 ,  𝑏 } ) | 
						
							| 20 | 19 | biimpi | ⊢ ( 𝑉  =  { 𝑎 ,  𝑏 }  →  ( Vtx ‘ 𝐺 )  =  { 𝑎 ,  𝑏 } ) | 
						
							| 21 |  | nfrgr2v | ⊢ ( ( ( 𝑎  ∈  V  ∧  𝑏  ∈  V  ∧  𝑎  ≠  𝑏 )  ∧  ( Vtx ‘ 𝐺 )  =  { 𝑎 ,  𝑏 } )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 22 | 18 20 21 | syl2an | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 23 |  | df-nel | ⊢ ( 𝐺  ∉   FriendGraph   ↔  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } )  →  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 25 | 24 | pm2.21d | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 26 | 25 | com23 | ⊢ ( ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } )  →  ( 𝑉  ≠  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 27 | 26 | exlimivv | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎  ≠  𝑏  ∧  𝑉  =  { 𝑎 ,  𝑏 } )  →  ( 𝑉  ≠  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 28 | 12 27 | syl | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  =  2 )  →  ( 𝑉  ≠  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  2  →  ( 𝑉  ≠  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 30 | 29 | com23 | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  2  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 31 | 30 | com14 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  2  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  2  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 33 | 32 | 3imp | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  2  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 34 | 33 | com12 | ⊢ ( ( ♯ ‘ 𝑉 )  =  2  →  ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 36 | 1 35 | rusgrprop0 | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 37 |  | eluz2gt1 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  1  <  ( ♯ ‘ 𝑉 ) ) | 
						
							| 38 | 37 | anim1ci | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph  )  →  ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 39 | 1 | vdgn0frgrv2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑣  ∈  𝑉 )  →  ( 1  <  ( ♯ ‘ 𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) ) | 
						
							| 40 | 39 | impancom | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ( 𝑣  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) ) | 
						
							| 41 | 40 | ralrimiv | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝑉 ) )  →  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) | 
						
							| 42 |  | eqeq2 | ⊢ ( 𝐾  =  0  →  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 43 | 42 | ralbidv | ⊢ ( 𝐾  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  ↔  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 44 |  | r19.26 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) ) | 
						
							| 45 |  | nne | ⊢ ( ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) | 
						
							| 46 | 45 | bicomi | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ↔  ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) | 
						
							| 47 | 46 | anbi1i | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ( ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) ) | 
						
							| 48 |  | ancom | ⊢ ( ( ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ∧  ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) ) | 
						
							| 49 |  | pm3.24 | ⊢ ¬  ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ∧  ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 ) | 
						
							| 50 | 49 | bifal | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  ∧  ¬  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ⊥ ) | 
						
							| 51 | 47 48 50 | 3bitri | ⊢ ( ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ⊥ ) | 
						
							| 52 | 51 | ralbii | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  ↔  ∀ 𝑣  ∈  𝑉 ⊥ ) | 
						
							| 53 |  | r19.3rzv | ⊢ ( 𝑉  ≠  ∅  →  ( ⊥  ↔  ∀ 𝑣  ∈  𝑉 ⊥ ) ) | 
						
							| 54 |  | falim | ⊢ ( ⊥  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 55 | 53 54 | biimtrrdi | ⊢ ( 𝑉  ≠  ∅  →  ( ∀ 𝑣  ∈  𝑉 ⊥  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ∀ 𝑣  ∈  𝑉 ⊥  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 57 | 56 | com12 | ⊢ ( ∀ 𝑣  ∈  𝑉 ⊥  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 58 | 52 57 | sylbi | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 59 | 44 58 | sylbir | ⊢ ( ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 61 | 43 60 | biimtrdi | ⊢ ( 𝐾  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 62 | 61 | com4t | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  ≠  0  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 63 | 38 41 62 | 3syl | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph  )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 64 | 63 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 65 | 64 | com25 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 67 | 66 | com15 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 68 | 67 | com12 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 69 | 68 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 70 | 36 69 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 71 | 70 | impcom | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 72 | 71 | impcom | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 73 | 1 | frrusgrord | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 ) ) | 
						
							| 75 |  | id | ⊢ ( 𝐾  =  2  →  𝐾  =  2 ) | 
						
							| 76 |  | oveq1 | ⊢ ( 𝐾  =  2  →  ( 𝐾  −  1 )  =  ( 2  −  1 ) ) | 
						
							| 77 | 75 76 | oveq12d | ⊢ ( 𝐾  =  2  →  ( 𝐾  ·  ( 𝐾  −  1 ) )  =  ( 2  ·  ( 2  −  1 ) ) ) | 
						
							| 78 | 77 | oveq1d | ⊢ ( 𝐾  =  2  →  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 )  =  ( ( 2  ·  ( 2  −  1 ) )  +  1 ) ) | 
						
							| 79 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 80 | 79 | oveq2i | ⊢ ( 2  ·  ( 2  −  1 ) )  =  ( 2  ·  1 ) | 
						
							| 81 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 82 | 80 81 | eqtri | ⊢ ( 2  ·  ( 2  −  1 ) )  =  2 | 
						
							| 83 | 82 | oveq1i | ⊢ ( ( 2  ·  ( 2  −  1 ) )  +  1 )  =  ( 2  +  1 ) | 
						
							| 84 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 85 | 83 84 | eqtri | ⊢ ( ( 2  ·  ( 2  −  1 ) )  +  1 )  =  3 | 
						
							| 86 | 78 85 | eqtrdi | ⊢ ( 𝐾  =  2  →  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 )  =  3 ) | 
						
							| 87 | 86 | eqeq2d | ⊢ ( 𝐾  =  2  →  ( ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 )  ↔  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 88 |  | pm2.21 | ⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 89 | 88 | ad2antrr | ⊢ ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 90 | 89 | com12 | ⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 91 | 87 90 | biimtrdi | ⊢ ( 𝐾  =  2  →  ( ( ♯ ‘ 𝑉 )  =  ( ( 𝐾  ·  ( 𝐾  −  1 ) )  +  1 )  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 92 | 74 91 | syl5com | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  2  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 93 | 1 | frgrreg | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) ) | 
						
							| 94 | 93 | imp | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( 𝐾  =  0  ∨  𝐾  =  2 ) ) | 
						
							| 95 | 72 92 94 | mpjaod | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐺  RegUSGraph  𝐾 ) )  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 96 | 95 | exp32 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 97 | 96 | com34 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 98 | 97 | com23 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ( ¬  ( ♯ ‘ 𝑉 )  =  3  ∧  ¬  ( ♯ ‘ 𝑉 )  =  2 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 99 | 98 | exp4c | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 100 | 99 | com34 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 101 | 100 | com25 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 102 | 101 | ex | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 103 | 102 | com23 | ⊢ ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 104 | 103 | com14 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 105 | 104 | 3imp | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 106 | 105 | com3r | ⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  2  →  ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 107 | 34 106 | pm2.61i | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐺  ∈   FriendGraph   ∧  𝑉  ≠  ∅ )  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 108 | 107 | 3exp | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 109 | 11 108 | sylbir | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ∧  ( ♯ ‘ 𝑉 )  ≠  1 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 110 | 109 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑉 )  ≠  1  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 111 | 10 110 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 112 | 111 | com25 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 113 | 9 112 | sylbir | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑉 )  ≠  0 )  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 114 | 113 | ex | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑉 )  ≠  0  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) ) | 
						
							| 115 | 114 | impcomd | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  ≠  0 )  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ≠  ∅  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 116 | 115 | com14 | ⊢ ( 𝑉  ≠  ∅  →  ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  ≠  0 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 117 | 8 116 | mpcom | ⊢ ( ( 𝑉  ∈  Fin  ∧  ( ♯ ‘ 𝑉 )  ≠  0 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) | 
						
							| 118 | 117 | ex | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  ≠  0  →  ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 119 | 118 | com14 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑉 )  ≠  0  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 120 | 5 119 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 121 | 120 | com24 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) ) ) | 
						
							| 122 | 121 | 3imp | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 123 | 122 | com25 | ⊢ ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  →  ( 𝐺  RegUSGraph  𝐾  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) ) | 
						
							| 124 | 123 | imp | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 125 | 124 | com14 | ⊢ ( ¬  ( ♯ ‘ 𝑉 )  =  0  →  ( ¬  ( ♯ ‘ 𝑉 )  =  1  →  ( ¬  ( ♯ ‘ 𝑉 )  =  3  →  ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 126 | 125 | 3imp | ⊢ ( ( ¬  ( ♯ ‘ 𝑉 )  =  0  ∧  ¬  ( ♯ ‘ 𝑉 )  =  1  ∧  ¬  ( ♯ ‘ 𝑉 )  =  3 )  →  ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 127 | 4 126 | sylbi | ⊢ ( ¬  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 128 | 3 127 | pm2.61i | ⊢ ( ( ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  𝑉  ∈  Fin  ∧  𝐺  ∈   FriendGraph  )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 129 | 128 | 3exp1 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 130 | 2 129 | mpcom | ⊢ ( 𝑉  ∈  Fin  →  ( 𝐺  ∈   FriendGraph   →  ( 𝐺  RegUSGraph  𝐾  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 131 | 130 | 3imp21 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) |