| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝑉  ∈  Fin ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  𝐺  RegUSGraph  𝐾 ) | 
						
							| 5 | 1 | frgrregord013 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 7 |  | hasheq0 | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  ↔  𝑉  =  ∅ ) ) | 
						
							| 8 |  | eqneqall | ⊢ ( 𝑉  =  ∅  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 9 | 7 8 | biimtrdi | ⊢ ( 𝑉  ∈  Fin  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 10 | 9 | com23 | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑉  ∈  Fin  →  ( 𝑉  ≠  ∅  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) ) ) | 
						
							| 12 | 11 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 14 | 13 | com12 | ⊢ ( ( ♯ ‘ 𝑉 )  =  0  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 15 |  | orc | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 16 | 15 | a1d | ⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 17 |  | olc | ⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) | 
						
							| 18 | 17 | a1d | ⊢ ( ( ♯ ‘ 𝑉 )  =  3  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 19 | 14 16 18 | 3jaoi | ⊢ ( ( ( ♯ ‘ 𝑉 )  =  0  ∨  ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) ) | 
						
							| 20 | 6 19 | mpcom | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝑉  ∈  Fin  ∧  𝑉  ≠  ∅ )  ∧  𝐺  RegUSGraph  𝐾 )  →  ( ( ♯ ‘ 𝑉 )  =  1  ∨  ( ♯ ‘ 𝑉 )  =  3 ) ) |