Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 ∈ FriendGraph ) |
3 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → 𝑉 ∈ Fin ) |
4 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 RegUSGraph 𝐾 ) |
5 |
1
|
frgrregord013 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
7 |
|
hasheq0 |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) ) |
8 |
|
eqneqall |
⊢ ( 𝑉 = ∅ → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
9 |
7 8
|
syl6bi |
⊢ ( 𝑉 ∈ Fin → ( ( ♯ ‘ 𝑉 ) = 0 → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
10 |
9
|
com23 |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) |
11 |
10
|
a1i |
⊢ ( 𝐺 ∈ FriendGraph → ( 𝑉 ∈ Fin → ( 𝑉 ≠ ∅ → ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) ) ) |
12 |
11
|
3imp |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) → ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
14 |
13
|
com12 |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
15 |
|
orc |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
16 |
15
|
a1d |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
17 |
|
olc |
⊢ ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |
18 |
17
|
a1d |
⊢ ( ( ♯ ‘ 𝑉 ) = 3 → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
19 |
14 16 18
|
3jaoi |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 0 ∨ ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) → ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) ) |
20 |
6 19
|
mpcom |
⊢ ( ( ( 𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅ ) ∧ 𝐺 RegUSGraph 𝐾 ) → ( ( ♯ ‘ 𝑉 ) = 1 ∨ ( ♯ ‘ 𝑉 ) = 3 ) ) |