| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simpl1 |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G e. FriendGraph ) | 
						
							| 3 |  | simpl2 |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> V e. Fin ) | 
						
							| 4 |  | simpr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G RegUSGraph K ) | 
						
							| 5 | 1 | frgrregord013 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 7 |  | hasheq0 |  |-  ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) | 
						
							| 8 |  | eqneqall |  |-  ( V = (/) -> ( V =/= (/) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 9 | 7 8 | biimtrdi |  |-  ( V e. Fin -> ( ( # ` V ) = 0 -> ( V =/= (/) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) | 
						
							| 10 | 9 | com23 |  |-  ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. FriendGraph -> ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 14 | 13 | com12 |  |-  ( ( # ` V ) = 0 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 15 |  | orc |  |-  ( ( # ` V ) = 1 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 16 | 15 | a1d |  |-  ( ( # ` V ) = 1 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 17 |  | olc |  |-  ( ( # ` V ) = 3 -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 18 | 17 | a1d |  |-  ( ( # ` V ) = 3 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 19 | 14 16 18 | 3jaoi |  |-  ( ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) | 
						
							| 20 | 6 19 | mpcom |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |