| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrreggt1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
simp1 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> G e. FriendGraph ) |
| 3 |
|
simp2 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> V e. Fin ) |
| 4 |
|
hashcl |
|- ( V e. Fin -> ( # ` V ) e. NN0 ) |
| 5 |
|
0red |
|- ( ( # ` V ) e. NN0 -> 0 e. RR ) |
| 6 |
|
3re |
|- 3 e. RR |
| 7 |
6
|
a1i |
|- ( ( # ` V ) e. NN0 -> 3 e. RR ) |
| 8 |
|
nn0re |
|- ( ( # ` V ) e. NN0 -> ( # ` V ) e. RR ) |
| 9 |
5 7 8
|
3jca |
|- ( ( # ` V ) e. NN0 -> ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) ) |
| 10 |
9
|
adantr |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) ) |
| 11 |
|
3pos |
|- 0 < 3 |
| 12 |
11
|
a1i |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 0 < 3 ) |
| 13 |
|
simpr |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 3 < ( # ` V ) ) |
| 14 |
|
lttr |
|- ( ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) -> ( ( 0 < 3 /\ 3 < ( # ` V ) ) -> 0 < ( # ` V ) ) ) |
| 15 |
14
|
imp |
|- ( ( ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) /\ ( 0 < 3 /\ 3 < ( # ` V ) ) ) -> 0 < ( # ` V ) ) |
| 16 |
10 12 13 15
|
syl12anc |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 0 < ( # ` V ) ) |
| 17 |
16
|
ex |
|- ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> 0 < ( # ` V ) ) ) |
| 18 |
|
ltne |
|- ( ( 0 e. RR /\ 0 < ( # ` V ) ) -> ( # ` V ) =/= 0 ) |
| 19 |
5 17 18
|
syl6an |
|- ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( # ` V ) =/= 0 ) ) |
| 20 |
|
hasheq0 |
|- ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
| 21 |
20
|
necon3bid |
|- ( V e. Fin -> ( ( # ` V ) =/= 0 <-> V =/= (/) ) ) |
| 22 |
21
|
biimpcd |
|- ( ( # ` V ) =/= 0 -> ( V e. Fin -> V =/= (/) ) ) |
| 23 |
19 22
|
syl6 |
|- ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( V e. Fin -> V =/= (/) ) ) ) |
| 24 |
23
|
com23 |
|- ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) ) |
| 25 |
4 24
|
mpcom |
|- ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) |
| 26 |
25
|
a1i |
|- ( G e. FriendGraph -> ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) ) |
| 27 |
26
|
3imp |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> V =/= (/) ) |
| 28 |
2 3 27
|
3jca |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) ) |
| 29 |
28
|
ad2antrl |
|- ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) ) |
| 30 |
|
simpl |
|- ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> G RegUSGraph k ) |
| 31 |
1
|
frgrregord13 |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph k ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
| 32 |
29 30 31
|
syl2anc |
|- ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
| 33 |
|
1red |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 e. RR ) |
| 34 |
6
|
a1i |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 3 e. RR ) |
| 35 |
8
|
adantr |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) e. RR ) |
| 36 |
|
1lt3 |
|- 1 < 3 |
| 37 |
36
|
a1i |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 < 3 ) |
| 38 |
33 34 35 37 13
|
lttrd |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 < ( # ` V ) ) |
| 39 |
33 38
|
gtned |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 1 ) |
| 40 |
|
eqneqall |
|- ( ( # ` V ) = 1 -> ( ( # ` V ) =/= 1 -> -. G RegUSGraph k ) ) |
| 41 |
39 40
|
syl5com |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( # ` V ) = 1 -> -. G RegUSGraph k ) ) |
| 42 |
|
ltne |
|- ( ( 3 e. RR /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 3 ) |
| 43 |
7 42
|
sylan |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 3 ) |
| 44 |
|
eqneqall |
|- ( ( # ` V ) = 3 -> ( ( # ` V ) =/= 3 -> -. G RegUSGraph k ) ) |
| 45 |
43 44
|
syl5com |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( # ` V ) = 3 -> -. G RegUSGraph k ) ) |
| 46 |
41 45
|
jaod |
|- ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) |
| 47 |
46
|
ex |
|- ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) |
| 48 |
4 47
|
syl |
|- ( V e. Fin -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) |
| 49 |
48
|
a1i |
|- ( G e. FriendGraph -> ( V e. Fin -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) ) |
| 50 |
49
|
3imp |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) |
| 51 |
50
|
ad2antrl |
|- ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) |
| 52 |
32 51
|
mpd |
|- ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> -. G RegUSGraph k ) |
| 53 |
52
|
ex |
|- ( G RegUSGraph k -> ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) ) |
| 54 |
|
ax-1 |
|- ( -. G RegUSGraph k -> ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) ) |
| 55 |
53 54
|
pm2.61i |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) |
| 56 |
55
|
ralrimiva |
|- ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> A. k e. NN0 -. G RegUSGraph k ) |