| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrreggt1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | simp1 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> G e. FriendGraph ) | 
						
							| 3 |  | simp2 |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> V e. Fin ) | 
						
							| 4 |  | hashcl |  |-  ( V e. Fin -> ( # ` V ) e. NN0 ) | 
						
							| 5 |  | 0red |  |-  ( ( # ` V ) e. NN0 -> 0 e. RR ) | 
						
							| 6 |  | 3re |  |-  3 e. RR | 
						
							| 7 | 6 | a1i |  |-  ( ( # ` V ) e. NN0 -> 3 e. RR ) | 
						
							| 8 |  | nn0re |  |-  ( ( # ` V ) e. NN0 -> ( # ` V ) e. RR ) | 
						
							| 9 | 5 7 8 | 3jca |  |-  ( ( # ` V ) e. NN0 -> ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) ) | 
						
							| 11 |  | 3pos |  |-  0 < 3 | 
						
							| 12 | 11 | a1i |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 0 < 3 ) | 
						
							| 13 |  | simpr |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 3 < ( # ` V ) ) | 
						
							| 14 |  | lttr |  |-  ( ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) -> ( ( 0 < 3 /\ 3 < ( # ` V ) ) -> 0 < ( # ` V ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( ( 0 e. RR /\ 3 e. RR /\ ( # ` V ) e. RR ) /\ ( 0 < 3 /\ 3 < ( # ` V ) ) ) -> 0 < ( # ` V ) ) | 
						
							| 16 | 10 12 13 15 | syl12anc |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 0 < ( # ` V ) ) | 
						
							| 17 | 16 | ex |  |-  ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> 0 < ( # ` V ) ) ) | 
						
							| 18 |  | ltne |  |-  ( ( 0 e. RR /\ 0 < ( # ` V ) ) -> ( # ` V ) =/= 0 ) | 
						
							| 19 | 5 17 18 | syl6an |  |-  ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( # ` V ) =/= 0 ) ) | 
						
							| 20 |  | hasheq0 |  |-  ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) | 
						
							| 21 | 20 | necon3bid |  |-  ( V e. Fin -> ( ( # ` V ) =/= 0 <-> V =/= (/) ) ) | 
						
							| 22 | 21 | biimpcd |  |-  ( ( # ` V ) =/= 0 -> ( V e. Fin -> V =/= (/) ) ) | 
						
							| 23 | 19 22 | syl6 |  |-  ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( V e. Fin -> V =/= (/) ) ) ) | 
						
							| 24 | 23 | com23 |  |-  ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) ) | 
						
							| 25 | 4 24 | mpcom |  |-  ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) | 
						
							| 26 | 25 | a1i |  |-  ( G e. FriendGraph -> ( V e. Fin -> ( 3 < ( # ` V ) -> V =/= (/) ) ) ) | 
						
							| 27 | 26 | 3imp |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> V =/= (/) ) | 
						
							| 28 | 2 3 27 | 3jca |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) ) | 
						
							| 29 | 28 | ad2antrl |  |-  ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) ) | 
						
							| 30 |  | simpl |  |-  ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> G RegUSGraph k ) | 
						
							| 31 | 1 | frgrregord13 |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph k ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 32 | 29 30 31 | syl2anc |  |-  ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) | 
						
							| 33 |  | 1red |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 e. RR ) | 
						
							| 34 | 6 | a1i |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 3 e. RR ) | 
						
							| 35 | 8 | adantr |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) e. RR ) | 
						
							| 36 |  | 1lt3 |  |-  1 < 3 | 
						
							| 37 | 36 | a1i |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 < 3 ) | 
						
							| 38 | 33 34 35 37 13 | lttrd |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> 1 < ( # ` V ) ) | 
						
							| 39 | 33 38 | gtned |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 1 ) | 
						
							| 40 |  | eqneqall |  |-  ( ( # ` V ) = 1 -> ( ( # ` V ) =/= 1 -> -. G RegUSGraph k ) ) | 
						
							| 41 | 39 40 | syl5com |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( # ` V ) = 1 -> -. G RegUSGraph k ) ) | 
						
							| 42 |  | ltne |  |-  ( ( 3 e. RR /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 3 ) | 
						
							| 43 | 7 42 | sylan |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( # ` V ) =/= 3 ) | 
						
							| 44 |  | eqneqall |  |-  ( ( # ` V ) = 3 -> ( ( # ` V ) =/= 3 -> -. G RegUSGraph k ) ) | 
						
							| 45 | 43 44 | syl5com |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( # ` V ) = 3 -> -. G RegUSGraph k ) ) | 
						
							| 46 | 41 45 | jaod |  |-  ( ( ( # ` V ) e. NN0 /\ 3 < ( # ` V ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) | 
						
							| 47 | 46 | ex |  |-  ( ( # ` V ) e. NN0 -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) | 
						
							| 48 | 4 47 | syl |  |-  ( V e. Fin -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) | 
						
							| 49 | 48 | a1i |  |-  ( G e. FriendGraph -> ( V e. Fin -> ( 3 < ( # ` V ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) ) ) | 
						
							| 50 | 49 | 3imp |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) | 
						
							| 51 | 50 | ad2antrl |  |-  ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> -. G RegUSGraph k ) ) | 
						
							| 52 | 32 51 | mpd |  |-  ( ( G RegUSGraph k /\ ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) ) -> -. G RegUSGraph k ) | 
						
							| 53 | 52 | ex |  |-  ( G RegUSGraph k -> ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) ) | 
						
							| 54 |  | ax-1 |  |-  ( -. G RegUSGraph k -> ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) ) | 
						
							| 55 | 53 54 | pm2.61i |  |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) /\ k e. NN0 ) -> -. G RegUSGraph k ) | 
						
							| 56 | 55 | ralrimiva |  |-  ( ( G e. FriendGraph /\ V e. Fin /\ 3 < ( # ` V ) ) -> A. k e. NN0 -. G RegUSGraph k ) |